• Title/Summary/Keyword: detection and interpolation

Search Result 164, Processing Time 0.025 seconds

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

Demosaicing Algorithm by Gradient Edge Detection Filtering on Color Component (컬러 성분 에지 기울기 검출 필터링을 이용한 디모자이킹 알고리즘)

  • Jeon, Gwan-Ggil;Jung, Tae-Young;Kim, Dong-Hyung;Kim, Seung-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1138-1146
    • /
    • 2009
  • Digital cameras adopting a single CCD detector collect image color by subsampling in three color planes and successively interpolating the information to reconstruct full-resolution color images. Therefore, to recovery of a full-resolution color image from a color filter array (CFA) like the Bayer pattern is generally considered as an interpolation issue for the unknown color components. In this paper, we first calculate luminance component value by combining R, G, B channel component information which is quite different from the conventional demosaicing algorithm. Because conventional system calculates G channel component followed by computing R and B channel components. Integrating the obtained gradient edge information and the improved weighting function in luminance component, a new edge sensitive demosaicing technique is presented. Based on 24 well known testing images, simulation results proved that our presented high-quality demosaicing technique shows the best image quality performance when compared with several recently presented techniques.

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

Comparison of Clustering Techniques in Flight Approach Phase using ADS-B Track Data (공항 근처 ADS-B 항적 자료에서의 클러스터링 기법 비교)

  • Jong-Chan Park;Heon Jin Park
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • Deviation of route in aviation safety management is a dangerous factor that can lead to serious accidents. In this study, the anomaly score is calculated by classifying the tracks through clustering and calculating the distance from the cluster center. The study was conducted by extracting tracks within 100 km of the airport from the ADS-B track data received for one year. The wake was vectorized using linear interpolation. Latitude, longitude, and altitude 3D coordinates were used. Through PCA, the dimension was reduced to an axis representing more than 90% of the overall data distribution, and k-means clustering, hierarchical clustering, and PAM techniques were applied. The number of clusters was selected using the silhouette measure, and an abnormality score was calculated by calculating the distance from the cluster center. In this study, we compare the number of clusters for each cluster technique, and evaluate the clustering result through the silhouette measure.

A Fault Diagnosis Technique of an Inverter-fed PMSM under Winding Shorted Turn and Inverter Switch Open Fault (권선 단락 및 스위치 개방 고장 시의 인버터 구동 영구자석 동기전동기의 고장 진단 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.94-105
    • /
    • 2010
  • To detect faults in an inverter-fed permanent magnet synchronous motor (PMSM) drive under the circumstance having faults in a stator winding and inverter switch, an on-line basis fault detecting scheme during operation is presented. The proposed scheme is achieved by monitoring the second-order harmonic component in q-axis current and the fault is detected by comparing these components with those in normal conditions. The linear interpolation method is employed to determine the harmonic data in normal operating conditions. As soon as the fault is detected, the operating mode is changed to identify a fault type using the phase current waveform. To verify the effectiveness of the proposed fault detecting scheme, a test motor to allow inter-turn short in the stator winding has been built. The entire control algorithm is implemented using DSP TMS320F28335. Without requiring an additional hardware, the fault can be effectively detected by the proposed scheme during operation so long as the steady-state condition is satisfied.

A DETECTION STUDY OF THE IONOSPHERIC TOTAL ELECTRON CONTENTS VARIATIONS USING GPS NETWORK (GPS 기준국망을 이용한 전리층 총전자수 변화 검출 연구)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm. It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

A Fast Processing Algorithm for Lidar Data Compression Using Second Generation Wavelets

  • Pradhan B.;Sandeep K.;Mansor Shattri;Ramli Abdul Rahman;Mohamed Sharif Abdul Rashid B.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2006
  • The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the UDAR data compression. A newly developed data compression approach to approximate the UDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become an important research topic for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original UDAR data. The results show that this method can be used for significant reduction of data set.

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.

Coagulation Control of High Turbid Water Samples Using a Streaming Current Control System (유동흐름 전류계를 이용한 정수장 고탁도 유입수 응집 제어 방법에 대한 연구)

  • Nam, Seung-Woo;Jo, Byung-Il;Kim, Won-Kyong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.128-135
    • /
    • 2012
  • Objectives: This study was aimed at determining the optimum coagulation dosage in a high turbid kaolin water sample using streaming current detection (SCD) as an alternative to the jar test. Methods: SCD is able to optimize coagulant dosing by titration of negatively charged particles. Kaolin particles were used to mimic highly turbid water ranging from 50 to 600 NTU, and polyaluminum chloride (PAC, 17%) was applied as a titrant and coagulant. The coagulation consisted of rapid stirring (5 min at 140 rpm), reduced stirring (20 min at 70 rpm), and settling (60 min). To confirm the coagulation effect, a jar test was also compared with the SCD titration results. Results: SCD titration of kaolin water samples showed that the dose of PAC increased as the pH rose. However, supernatant turbidity less than 1 NTU after coagulation was not achieved for high turbid water by SCD titration. Instead, a conversion factor was used to calculate the optimum PAC dosage for high turbid water by correlating a jar test result with that from an SCD titration. Using this approach, we were able to successfully achieve less than 1 NTU in treated water. Conclusions: For high turbid water influent in a water treatment plant, particularly during summer, the application of SCD control by applying a conversion factor can be more useful than a jar test due to the rapid calculation of coagulation dosage. Also, the interpolation of converted PAC dose could successfully achieve turbidity in the treated water of less than 1 NTU. This result indicates that an SCD system can be effectively used in a water treatment plant even for high turbid water during the rainy season.

Detection of Inflection Point of Waveform by Wavelet Threshold Denoising (웨이브릿 임계치 잡음제거에 의한 파형의 변곡점 검출)

  • Kim, Tae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2205-2210
    • /
    • 2009
  • In this paper, the proposed method is a denoising technology by tangent curve interpolation of zero points. The problem of the hard threshold method is improved by the proposed method. The quantity of time fluctuation of the electromagnetic signal as the quantity of electric fluctuation of the natural world or the curve of motion waveform of the fast movement of human extracted using virtual reality is, in fact, complex. Therefore it is important to decide exactly the signal properties as the inflection point for observation signal. In particular, it is necessary to extract the properties after denoising, since the measurement signal of the natural world include some noises. It shows that the noise of the inflection point signal with noise II, noise factor 5, is eliminated by the proposed method, and the result of SNR for the signal is improved 3.4dB than that by the conventional hard threshold.