• Title/Summary/Keyword: detected object

Search Result 691, Processing Time 0.037 seconds

A theory of Modified Incremental Circle Transform and its Application for Recognition of Two-Dimensional Polygonal Objects (Modified Incremental Circle Transform 이론과 2차원의 다각형 물체 인식에의 응용)

  • ;;;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.861-870
    • /
    • 1990
  • A method of recognizing objects is proposed that uses a concept of modified incremental circle transform. The modified incremental circle transform, which maps bundaries of an object into an unit circle, represnets efficiently the shape of the boundaries detected in digitized binary images of the objects. It is proved that modified incremental circle transform of object, which is invariant under object translation, rotation, and size, can be used as feature information for recognizing two dimensional polygonal object efficiently.

  • PDF

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

New Scheme for Smoker Detection (흡연자 검출을 위한 새로운 방법)

  • Lee, Jong-seok;Lee, Hyun-jae;Lee, Dong-kyu;Oh, Seoung-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1120-1131
    • /
    • 2016
  • In this paper, we propose a smoker recognition algorithm, detecting smokers in a video sequence in order to prevent fire accidents. We use description-based method in hierarchical approaches to recognize smoker's activity, the algorithm consists of background subtraction, object detection, event search, event judgement. Background subtraction generates slow-motion and fast-motion foreground image from input image using Gaussian mixture model with two different learning-rate. Then, it extracts object locations in the slow-motion image using chain-rule based contour detection. For each object, face is detected by using Haar-like feature and smoke is detected by reflecting frequency and direction of smoke in fast-motion foreground. Hand movements are detected by motion estimation. The algorithm examines the features in a certain interval and infers that whether the object is a smoker. It robustly can detect a smoker among different objects while achieving real-time performance.

A Fast Semiautomatic Video Object Tracking Algorithm (고속의 세미오토매틱 비디오객체 추적 알고리즘)

  • Lee, Jong-Won;Kim, Jin-Sang;Cho, Won-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.291-294
    • /
    • 2004
  • Semantic video object extraction is important for tracking meaningful objects in video and object-based video coding. We propose a fast semiautomatic video object extraction algorithm which combines a watershed segmentation schemes and chamfer distance transform. Initial object boundaries in the first frame are defined by a human before the tracking, and fast video object tracking can be achieved by tracking only motion-detected regions in a video frame. Experimental results shows that the boundaries of tracking video object arc close to real video object boundaries and the proposed algorithm is promising in terms of speed.

  • PDF

A Method for Extracting Shape and Position of an Object using Partial M-array

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.262-265
    • /
    • 1999
  • This paper describes a new method for object extraction necessary for image tracking systems. The extraction method which this paper proposes here is that an M-array is set between a camera and the object and the obtained image including the object and M-array is pro-cessed for extracting the object. The image processing utilizes a characteristic of M-array which is robust to noise. When an M-array is overlapped on the object in background image, the object woud have a part of M-array, which is detected by use of partial correlation between the mosaic image of M-array and the standard M-array. Thus the shape and position of the object are extracted by extracting a common domain of width of high correlation value. Experiments are carried out by using an actual photo of Kumamoto city taken from an airplane as background, and by use of a rectangular and circular object. The results of experiment show a wide application of this method for practical image tracking systems.

  • PDF

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Stereo Object Tracking System using Multiview Image Reconstruction Scheme (다시점 영상복원 기법을 이용한 스테레오 물체추적 시스템)

  • Ko, Jung-Hwan;Ohm, Woo-Young
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.54-62
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Basing on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having $256\times256$ pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05 % on average between the detected and actual location coordinates of the target object.

Object Tracking Algorithm for a Mobile Robot Using Ultrasonic Sensors

  • Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.5-44
    • /
    • 2001
  • This paper proposes the algorithm which a mobile robot tracks the object captured by ultrasonic sensors of the robot and automatically generates a path according to the object In the proposed algorithm, a robot detects movements of the object as using ultrasonic sensors and then the robot follows the moving object. This algorithm simplifies robot path planning. The eight ultrasonic sensors on the robot capture distances between the robot and objects. The robot detects the movements of the object by using the changes of the distances captured by ultrasonic sensors. The target position of the robot is determined as the position of the detected moving object. The robot follows the object according to this movement strategy. The effectiveness of the proposed algorithm is verified through experiments.

  • PDF