• 제목/요약/키워드: detail of joint

검색결과 202건 처리시간 0.026초

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

여유 자유도 로봇과 비 여유 자유도 로봇의 조작도 해석상의 차이점에 관한 연구 (A study on the difference on the manipulability for redundant and nonredundant robot manipulators)

  • 이영일;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1609-1612
    • /
    • 1997
  • Kinematically redundantant manipulators have a nimber of potential advantages over nonredundant ones. Questions associated with manipulability measures for (non)redundant manipulators derived by minimum 2-norm solution and minimum infinity-norm solution in unit joint velocity are examined in detail.

  • PDF

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.

계산 방법론에 따른 용접부 응력 평가 및 비교(FE 상세 모델 vs 수 계산) (Stress Comparison on Welded Connection between Detail FE Model and Classical Calculation)

  • 송문성;정상웅
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.621-626
    • /
    • 2010
  • According to development of method and device of Finite Element Analysis, the strength of welded joint is demonstrated by Finite Element Analysis not classical calculations. On the FEA, all of the joints for carbody are assumed to be ideal connections and the yield stress of welded joint is assumed to be the same to base metal. On these assumption, FEA is appropriate to evaluate the overall stability and strength of whole carbody. The classical calculation is appropriate to evaluate strength of specific welded joint and to determine the weld method and properties. Some project request strength calculation of the specific welded joints in addition to FEA, because of the demonstration of stability. The objective of this paper is the check of the consistency of the FEA result for the welded joints by the stress comparison between Detailed FE Model and classical calculation and the evaluation of the reliability of FEA result.

  • PDF

Behaviour of welded beam-to-column joints subjected to the static load

  • Skejic, Davor;Dujmovic, Darko;Androic, Boris
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.17-35
    • /
    • 2008
  • Neglecting the real joint behaviour in frame analysis may result in unrealistic predictions of the response and reliability of steel frames. The reliability of the prediction of main joint properties according to the component method (Eurocode 3-Part 1.8) still remains open to further investigation. The first step toward the solution is to compare the theoretical expressions given in EN 1993-1-8 and the experimental results. With that goal in mind six nominally the same, but really different specimens of welded beam-to-column joints subjected to static load were tested. The specimens present a combination of nominally identical structural elements produced in different European mills. This paper provides these tests, as well as their detailed evaulation and interpretation. All three joint structural properties (rotational stiffness, moment resistance and rotation capacity) have been considered. Four models for determining the plastic resistance out of experimental Mj-${\phi}$ curves have been applied. The results that have been discussed in detail, point to the fact that EN 1993-1-8 underestimates the real structural properties of the tested type of joint, as well as to the conclusion that detailed research of this problem needs to be conducted using the probabilistic reliability methods.

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델 (Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7)

  • 손정현;유완석;김두현
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발 (Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis)

  • 이건;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

`Tectonic`과 Carlo Scarpa 건축(建築)에서의 디테일에 대한 존재론적(存在論的) 이해(理解)에 관한 연구(硏究) -Heidegger의 실존(實存) 현상학적(現象學的) 사유방식(思惟方式)을 중심(中心)으로- (A Study on the Ontological Apprehension of 'Tectonic' and Architectural Details in Carlo Scarpa's Architecture - focused on the way of thinking through Heidegger's existential phenomenology -)

  • 이상진;변태호
    • 건축역사연구
    • /
    • 제11권1호
    • /
    • pp.49-64
    • /
    • 2002
  • The recently published papers and essays regarding 'tectonic' bring us to rumination of its importance on comprehending modern architectural process. Many architectural theorists may seem to seek the substance of architecture through the discussion of 'tectonic' for the purpose of overcoming the dilemma of representation which can be easily found in modern architectural forms. Their emphasizing on its double-faced aspect as the manner of representation, that is semantic and aesthetic, may imply the significance of philosophical approach especially to the recent architectural phenomena. From this point, it ought to be meaningful to manifest etymological connection between the terms with semantic analysis and interpret the substance and ontological meaning of 'tectonic' referring Martin Heidegger's existential philosophy. Besides the works of Carlo Scarpa, that are known as the art of making, are exampled to prove the way how the ontological meaning of practical act is exposed on an artwork. The idea of 'tectonic' connotes not only technological aspect as construction of form and space, but also ontological aspect as joint or detail, that is the result of logos. The 'tectonic' means etymologically 'joint' having double-meaning structure, technology and aesthetics. It means 'detail' as minimum units of architectural form and as sites where making relationship or connection takes place in the way of ontological apprehension. The 'detail' as the place of innovation and invention implies the culture of an area, and expresses craftsmanship, which modem architecture buries in oblivion. This study aims to deviate from the aesthetical commercialization in which the modern architecture tends to fall, and further, propose the possible way to succeed traditional locality in an epistemological point of view.

  • PDF