• 제목/요약/키워드: desorption and recombination

검색결과 23건 처리시간 0.022초

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제8권3호
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

HDDR Characteristics and Magnetic Properties of Nd15(Fe1-xCox)77B8(x=0-0.6) Alloys

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제7권4호
    • /
    • pp.127-131
    • /
    • 2002
  • HDDR characteristics and magnetic properties of $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys were investigated. The effect of applying magnetic field during the recombination step on the anisotropic nature of the HDDR-treated material was also examined. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$ phase in the Nd-Fe-B alloys with high Co-substitution alloy had remarkably enhanced phase stability. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution could be HDDR-treated successfully by only using high pressure hydrogen. However, these alloys had no appreciable coercivity. The poor coercivity of the HDDR-treated $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution was attributed to the $Nd{(Fe,Co)}_2$ phase in the alloys. The magnetic filed applied during the recombination step had little effect on the anisotropic nature of the HDDR-treated powder.

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

우주선용 고온 절연체의 표면 코팅 재료 개발 (Development of protection coating material on the surface of insulation tiles of space vehicle)

  • 김영채;문세기
    • 한국결정성장학회지
    • /
    • 제5권4호
    • /
    • pp.370-377
    • /
    • 1995
  • 우주 항공 기술의 첨단인 Space Shuttle Orbiter(SSO)의 두 coating material 인 Reaction Cured Glass(RCG)와 Spinel(C742)을 제조하여, 표면 위에 부딪히는 원자들의 재결합 가능성 $\gamma$를 확산반응기에서 측정하였다. SSO의 재진입 온도인 약 1000K에서 C742의 산소 원자들의 재결합 가능성 $\gamma$$3 {\times} 10^{-2}$으로 RCG에서의 $4 {\times} 10^{-4}$ 보다는 더 큰 값을 갖는다. C742에서 $\gamma$값이 더 높다는 것은 RCG에서 보다 더 많은 활성점을 갖고 있다는 것을 의미한다. 낮은 온도에서 활성점에 있는 원자의 탈착을 유도함으로써 보다 활성이 낮은 표면 코팅 재료를 개발할 수 있다.

  • PDF

Phase Relationships and Magnetic Properties of HDDR-treated $Sm_3$(Fe,Co,V)$_{29}$ Alloy

  • Kwon, Hae-Woong
    • Journal of Magnetics
    • /
    • 제6권4호
    • /
    • pp.122-125
    • /
    • 2001
  • Phase relationships of the HDDR (hydrogenation, disproportionation, desorption and recombination)-treated Sm$_3$(Fe,M)$_{29}$-type alloy with chemical composition of Sm$_{9}$Fe$_{65}$ $Co_{20}$V$_{6}$ were studied by X-ray diffraction (XRD) and by thermomagnetic analysis (TMA). The alloy was disproportionated into a mixture of $SmH_{x}$ and $\alpha$-Fe at high temperature under hydrogen gas. The disproportionated material was recombined into a mixture of Sm-(Fe,M) (M = Co and/or V) and $\alpha$-Fe phases. The structure of the Sm-(Fe,M) phase was dependent upon the recombination conditions, and a detailed phase diagram showing the phase relationships in the HDDR-treated alloy has been established. The Sm-(Fe,M) phase in material recombined above $900^{\circ}C$ had the $Sm_2Fe_{17}$-type structure, and it exhibited the $SmFe_{7}$-type structure when recombined at temperatures ranging from $700^{\circ}C$ to $850^{\circ}C$. Recombination below $650^{\circ}C$ led to the $SmFe_3$-type structure of the Sm-(Fe,M) phase. Curie temperatures of the Sm-(Fe,M) phases in the recombined material were significantly higher than those of the corresponding stoichiometric phases. It was suggested that the chemical composition of the Sm-(Fe,M) phases may be significantly different from that of the corresponding stoichiometric phases. All the HDDR-treated $Sm_{9}Fe_{65}Co_{20}V_{6}$ materials showed the soft magnetic features regardless of the phase constitution.n.

  • PDF

수소파쇄 제어를 통한 HDDR 처리한 Nd-Fe-B계 재료의 보자력 재현성 향상 (Improving Reproducibility of Coercivity of HDDR-treated Nd-Fe-B-type Material by Controlling Hydrogen Decrepitation)

  • 김경민;김자영;권해웅;이정구;유지훈
    • 한국자기학회지
    • /
    • 제25권4호
    • /
    • pp.111-116
    • /
    • 2015
  • Nd-Fe-B계 합금에 대한 HDDR(hydrogenation : 수소화 - disproportionation : 분해 - desorption : 탈가스 - recombination : 재결합) 공정에서 실질적인 어려움은 제조된 분말의 자기적 특성, 특히 보자력의 재현성이 대단히 낮다는 점이다. 본 연구에서는 수소파쇄 시 입자 내에 미세균열을 최대한 도입하고 이것이 HDDR 처리한 $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ 합금 분말의 보자력의 재현성에 미치는 영향을 조사하였다. 수소파쇄된 분말 입자 내에 미세균열을 최대한 많이 도입하기 위하여 분해반응 전 고온에서 충분히 수소방출 처리를 실시하였다. 추가 수소방출처리를 실시하고 HDDR 처리하여 제조한 분말은 보자력 및 그 재현성이 향상되었다. 추가 수소방출로 결정격자가 수축하면서 입자 내에 더욱 더 많은 미세균열이 도입되고, 이로 인하여 분말의 HDDR 반응 시 입자 전체에 걸쳐서 HDDR 반응이 균일하게 진행 되어 보자력의 재현성이 향상되었다.

수치모델을 이용한 ICP-CVD 장치의 증착 균일도 해석 (Numerical Modeling of Deposition Uniformity in ICP-CVD System)

  • 주정훈
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.279-286
    • /
    • 2008
  • Numerical analysis is done to investigate which would be the most influencing process parameter in determining the uniformity of deposition thickness in TiN ICP-CVD(inductively coupled plasma chemical vapor deposition). Two configurations of ICP antenna are modeled; side and top planar. Side and top gas inlets are considered with each ICP antenna geometries. Precursor for TiN deposition was TDMAT(Tetrakis Diethyl Methyl Amido Titanium). Two step volume dissociation of TDMAT is used and absorption, desorption and deposition surface reactions are included. Most influencing factors are H and N concentration dissociated by electron impact collisions in plasma volume which depends on the relative positions of gas inlet and ICP antenna generated hot plasma region. Low surface recombination of N shows hollow type concentration, but H gives a bell type distribution. Film thickness at substrate edges is sensitive to gas flow rate and at high pressures getting more dependent on flow characteristics.