DOI QR코드

DOI QR Code

Improving Reproducibility of Coercivity of HDDR-treated Nd-Fe-B-type Material by Controlling Hydrogen Decrepitation

수소파쇄 제어를 통한 HDDR 처리한 Nd-Fe-B계 재료의 보자력 재현성 향상

  • Received : 2015.08.03
  • Accepted : 2015.08.17
  • Published : 2015.08.31

Abstract

Practical difficulty in the HDDR (hydrogenation - disproportionation - desorption - recombination) processing of Nd-Fe-B-type alloy is a poor reproducibility of coercivity of the HDDR-treated material. In an attempt to improve the reproducibility of coercivity of the HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy, the hydrogen decrepitation was carefully controlled so as to induce more extensive micro-cracks in the particle. Prior to the hydrogenation and disproportionation reaction of HDDR processing, an additional hydrogen degassing was carried out at an elevated temperature of $600^{\circ}C$ under vacuum for the previously hydrogen decrepitated particle. During the additional hydrogen degassing the lattice of hydrogen absorbed $Nd_2Fe_{14}B$ phase was further shrunken, hence more microcracks were introduced in the particle due to its brittle nature. Particles with more micro-cracks had more homogeneous hydrogen absorption and desorption reaction during the HDDR-treatment. The improved reproducibility of coercivity of the HDDR-treated material was attributed to the improved homogeneity of the HDDR reactions due to the presence of more micro-cracks.

Nd-Fe-B계 합금에 대한 HDDR(hydrogenation : 수소화 - disproportionation : 분해 - desorption : 탈가스 - recombination : 재결합) 공정에서 실질적인 어려움은 제조된 분말의 자기적 특성, 특히 보자력의 재현성이 대단히 낮다는 점이다. 본 연구에서는 수소파쇄 시 입자 내에 미세균열을 최대한 도입하고 이것이 HDDR 처리한 $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ 합금 분말의 보자력의 재현성에 미치는 영향을 조사하였다. 수소파쇄된 분말 입자 내에 미세균열을 최대한 많이 도입하기 위하여 분해반응 전 고온에서 충분히 수소방출 처리를 실시하였다. 추가 수소방출처리를 실시하고 HDDR 처리하여 제조한 분말은 보자력 및 그 재현성이 향상되었다. 추가 수소방출로 결정격자가 수축하면서 입자 내에 더욱 더 많은 미세균열이 도입되고, 이로 인하여 분말의 HDDR 반응 시 입자 전체에 걸쳐서 HDDR 반응이 균일하게 진행 되어 보자력의 재현성이 향상되었다.

Keywords

References

  1. T. Takeshita and R. Nakayama, Proc. 11th Int'l Workshop on RE Magnets and Their Application, Pittsburgh (1990), p. 49.
  2. I. R. Harris and P. J. McGuiness, J. Less-Comnmon Metals 172, 1273 (1991).
  3. I. R. Harris, Proc. 12th Int'l Workshop on RE Magnets and Their Application, Canberra (1992), p. 347.
  4. P. J. McGuiness, C. Short, A. F. Wilson, and I. R. Harris, J. Alloys. Compd. 184, 243 (1992). https://doi.org/10.1016/0925-8388(92)90498-X
  5. R. Nakayama and T. Takeshita, J. Alloys. Compd. 193, 259 (1993). https://doi.org/10.1016/0925-8388(93)90364-S
  6. T. Takeshita and R. Nakayama, Proc. 10th Int'l Workshop on RE Magnets and Their Application, Kyoto (1989), p. 551.
  7. J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys. 55, 2078 (1984). https://doi.org/10.1063/1.333571
  8. L. Schultz, K. Schnitzke, and J. Wecker, J. Magn. Magn. Mater. 83, 254 (1990). https://doi.org/10.1016/0304-8853(90)90506-L
  9. V. Neu, U. Klement, R. Schafer, and L. Schultz, Mater. Lett. 26, 167 (1996). https://doi.org/10.1016/0167-577X(95)00219-7
  10. O. Isnard, W. B. Yelon, S. Miraglia, and D. Fruchart, J. Appl. Phys. 78, 525 (1995).
  11. M. A. Matin, H. W. Kwon, J. G. Lee, and J. H. Yu, IEEE Trans. Magn. 50, 2100504 (2014).
  12. D. Book and I.R. Harris, J. Alloys. Compd. 221, 187 (1995). https://doi.org/10.1016/0925-8388(94)01433-7
  13. M. A. Matin, H. W. Kwon, J. G. Lee, J. H. Yu, T. H. Kim, and C. W. Yang, IEEE Trans. Magn. 49, 3398 (2013). https://doi.org/10.1109/TMAG.2013.2243118
  14. H. W. Kwon, J. G. Lee, and J. H. Yu, IEEE Trans. Magn. 50, 2100604 (2014).
  15. K. M. Kim, H. W. Kwon, J. G. Lee, and J. H. Yu, J. Magn. 20, 21 (2015). https://doi.org/10.4283/JMAG.2015.20.1.021