• Title/Summary/Keyword: designed to gravity loads

Search Result 62, Processing Time 0.019 seconds

Soil-pile interaction effects in wharf structures under lateral loads

  • Doran, Bilge;Seckin, Aytug
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.267-276
    • /
    • 2014
  • Wharfs are essential to shipping and support very large gravity loads on both a short-term and long-term basis which cause quite large seismic internal forces. Therefore, these structures are vulnerable to seismic activities. As they are supported on vertical and/or batter piles, soil-pile interaction effects under earthquake events have a great importance in seismic resistance which is not yet fully understood. Seismic design codes have become more stringent and suggest the use of new design methods, such as Performance Based Design principles. According to Turkish Code for Coastal and Port Structures (TCCS 2008), the interaction between soil and pile should somehow be considered in the nonlinear analysis in an accurate manner. This study aims to explore the lateral load carrying capacity of recently designed wharf structures considering soil-pile interaction effects for different soil conditions. For this purpose, nonlinear structure analysis according to TCCS (2008) has been performed comparing simplified and detailed modeling results.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Wind tunnel tests of an irregular building and numerical analysis for vibration control by TLD

  • Jianchen Zhao;Jiayun Xu;Hang Jing
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Due to the irregular shape and the deviation of stiffness center and gravity center, buildings always suffer from complex surface load and vibration response under wind action. This study is dedicated to analyze the surface wind load and wind-induced response of an irregular building, and to discuss the possibility of top swimming pool as a TLD to diminish wind-induced vibration of the structure. Wind tunnel test was carried out on a hotel with irregular shape to analyze the wind load and structural response under 8 wind incident angles. Then a precise numerical model was established and calibrated through experimental results. The top swimming pool was designed according to the principle of frequency modulation, and equations of motion of the control system were derived theoretically. Finally, the wind induced response of the structure controlled by the pool was calculated numerically. The results show that both of wind loads and wind-induced responses of the structure are significantly different with wind incident angle varies, and the across-wind response is nonnegligible. The top swimming pool has acceptable damping effect, and can be designed as TLD to mitigate wind response.

Comparative Evaluation of Structural Systems for Tilted Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • Employing tilted forms in tall buildings is a relatively new architectural phenomenon, as are the cases with the Gate of Europe Towers in Madrid and the Veer Towers in Las Vegas. This paper studies structural system design options for tilted tall buildings and their performances. Tilted tall buildings are designed with various structural systems, such as braced tubes, diagrids and outrigger systems, and their structural performances are studied. Structural design of today's tall buildings built with higher strength materials is generally governed by lateral stiffness. Tilted towers are deformed laterally not only by lateral loads but also by dead and live loads due to their eccentricity. The impact of tilting tall buildings on the gravity and lateral load resisting systems is studied. Comparative evaluation of structural systems for tilted tall buildings is presented.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Fragility curves and loss functions for RC structural components with smooth rebars

  • Cardone, Donatello
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1181-1212
    • /
    • 2016
  • Fragility and loss functions are developed to predict damage and economic losses due to earthquake loading in Reinforced Concrete (RC) structural components with smooth rebars. The attention is focused on external/internal beam-column joints and ductile/brittle weak columns, designed for gravity loads only, using low-strength concrete and plain steel reinforcing bars. First, a number of damage states are proposed and linked deterministically with commonly employed methods of repair and related activities. Results from previous experimental studies are used to develop empirical relationships between damage states and engineering demand parameters, such as interstory and column drift ratios. Probability distributions are fit to the empirical data and the associated statistical parameters are evaluated using statistical methods. Repair costs for damaged RC components are then estimated based on detailed quantity survey of a number of pre-70 RC buildings, using Italian costing manuals. Finally, loss functions are derived to predict the level of monetary losses to individual RC components as a function of the experienced response demand.

A Study of Correlation between Experiment and Analysis of Nonlinear Behaviors of A 1:5 Scale RC Frame with Nonseismic Details (비내진 상세를 가진 1:5 축소 철근콘크리트 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구)

  • 이한선;우성우;허윤섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.483-486
    • /
    • 1999
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete (RC) frame which was designed only for gravity loads. One of the major objectives of these experiments are to provide the calibration to the available static and dynamic inelastic techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

Correlation of Experimental and Analytical Seismic Responses of a 1:5 Scale 3-Story Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.3-16
    • /
    • 2000
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete(RC) frame which was designed only for gravity loads. One of the major objectives of these experiments is to provide the calibration to the available static and dynamic inelastic analysis techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.