• Title/Summary/Keyword: design waves

Search Result 1,005, Processing Time 0.028 seconds

On The Study of Diffracted Waves About Breakwaters (방파제에서의 회절파에 관한 연구(제1보))

  • 강관원;서병하
    • Water for future
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 1974
  • The knowledge of the waves passing through the breakwater makes an important role in the efficient breakwater design. Wave diffraction is an important factor in this role, but some usable development about it have not been made in our country as yet. The diffraction of sea-water waves round the end of a semi-infinite impermeable breakwater has been investigated, applying a solution of the water wave diffraction problems given by Penney & Price. The wave pattern and heights on both the leewardside and the windward-side of the breakwater have been calculated and summarized in the form of diagrams with diffraction factors between $r/{\lambda}=0~50$. This involves some extension of the diffraction diagrams made previously. The theory and computation methods with computer program in fortran IV developed in this study make an efficient use for estimating the diffraction effects at a semi-infinite breakwater.

  • PDF

Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

  • Ouyang, Huei-Tau;Chen, Kue-Hong;Tsai, Chi-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.951-963
    • /
    • 2015
  • The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

Dynamic Experiment to Evaluate Response Characteristics of High-Rise Buildings on Period Characteristics of Seismic Waves (지진파 주기특성에 따른 고층건축물의 응답특성 평가를 위한 동적실험)

  • Oh, Sang-Hoon;Kim, Ju-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.127-133
    • /
    • 2019
  • Damage to high-rise buildings caused by earthquakes is less frequency due to small distribution of high-rise buildings and low transmissibility of seismic motion to high-rise buildings. However, demand for high-rise buildings is increasing for development of construction technology and efficient land use. In addition, if high-rise buildings are constructed on soft ground such as landfill, transmissibility of seismic motion due to long-periodization of seismic waves is likely to increase. Thus, with development of technology, buildings are required to expand range of seismic design such as safety for long-period seismic waves. Therefore, in this study, dynamic experiments were performed to evaluate response characteristics of high-rise buildings according to period characteristics of seismicwaves and time history analysis was performed to verify them.

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

Embodiment of outside orbit type supersonic waves multi curer for Fracture patient's type (radish stimulation, radish invasion) rehalititation promotion (Fracture 환자의 유형(무자극,무침습) 재활촉진을 위한 외부궤도형 초음파 다층치료기의 구현)

  • Kim, Whi-Young;Choe, Jin-Yeong;Park, Seong-Jun;Kim, Jin-Yeong;Park, Seong-Jun;Kim, Hui-Je
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2165-2166
    • /
    • 2006
  • Estrangement hierarchical by bipolarization is deepened and time space that social welfare by graying corresponds great so. Specially, is real condition that indifference by patient's increase which is solitary life string is come to involve by social problem.Together, Jaetaek bone fracture patient's ratio is zooming. Domestic BT technology, medical treatment solution technology offer more important role than role assistance enemy of modern technology and utilize by creative technology can. Specially, if apply supersonic waves in bone fracture treatment, there is treatise data that can reduce bone fracture treatment period of bone that bone does not stick well about 40%. Supersonic waves operation frequency used on both end because do 1m Hz, 1.3mHz, supersonic waves origination that have 1.5mHz's Piezo-ceramic crystal tranducer material each 4 premature senilitys in this research, and outside diameter according to impedance and Phase d used Gakgak4mm, 5.4mm, Dukke0.5mm, transformer deuce of length 70mm. Manufactured, and investigated supersonic waves distribution chart by capacity 50m W. Supersonic waves used by diagnosis mainly but is seen to become convenient medical treatment mounting in bone fracture patient's treatment if supplement clinically.If supplement system furthermore, is going to apply to osteoporosis patient, and this research tried to design poetic theme width directly and study rain standardization special quality and approach basic form because do modelling.

  • PDF

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Numerical Analysis of Wave Impact Forces in Numerical Wave Basin (수치파 수조를 이용한 파랑 충격력 수치해석)

  • Shin, Young-Seop;Hong, Key-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-210
    • /
    • 2006
  • The impact forces of the highly nonlinear waves are one of the important factors in designing the ocean structures. The impact forces are very difficult to analyze numerically and experimentally because they are impulsive in magnitude and occur instantaneously. In this study the numerical program based on N.S. equations are used to investigate the impact forces of steep waves where the waves are gene rated by the wave maker in the numerical wave basin. The arbitrary steep waves are generated by the superposition of waves of single frequency and the impact forces on vertical cylinder are simulated on the multiblock grids. V.O.F. and the local height function methods are used to track the free surfaces. To validate the numerical analysis the numerical results are compared with the experimental ones and the acceptable agreements are found. It is thought that more studies on the simulations of the incoming breaking waves and the impact forces on the vertical cylinder should be made to obtain the useful results to be applied in the offshore design.

  • PDF

Numerical and Experimental Study on Motion Response of 1MW OTEC Platform (1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Namwoo;Jung, Dong-Ho;Hong, Sa Young;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.