• Title/Summary/Keyword: design pressure

Search Result 7,683, Processing Time 0.037 seconds

Development of Computational Tools for Seismic Design of Architectural Components in Negative Pressure Isolation Wards (음압격리병동의 건축 비구조요소 내진설계를 위한 전산도구 개발)

  • Chu, Yu Rim;Kim, Tae Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2022
  • Recently, an unprecedented emerging infectious disease has rapidly spread, causing a global shortage of wards. Although various temporary beds have appeared, the supply of wards specializing in infectious diseases is required. Negative pressure isolation wards should maintain their function even after an earthquake. However, the current seismic design standards do not guarantee the negative pressure isolation wards' operational (OP) performance level. For this reason, some are not included in the design target even though they are non-structural elements that require seismic design. Also, the details of non-structural elements are usually determined during the construction phase. It is often necessary to complete the stability review and reinforcement design for non-structural elements within a short period. Against this background, enhanced performance objectives were set to guarantee the OP non-structural performance level, and a computerized tool was developed to quickly perform the seismic design of non-structural elements in the negative pressure isolation wards. This study created a spreadsheet-based computer tool that reflects the components, installation spacing, and design procedures of non-structural elements. Seismic performance review and design of the example non-structural elements were conducted using the computerized tool. The strength of some components was not sufficient, and it was reinforced. As a result, the time and effort required for strength evaluation, displacement evaluation, and reinforcement design were reduced through computerized tools.

Design of U-healthcare System for Real-time Blood Pressure Monitoring (실시간 혈압 모니터링 u-헬스케어 시스템의 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.161-168
    • /
    • 2018
  • High blood pressure is main today's adult disease and existing blood pressure gauge is not possible for real-time blood pressure measurement and remote monitoring. But real-time blood pressure monitoring u-healthcare system makes effect health management. In my paper, for monitoring real-time blood pressure, an architecture of real-time blood pressure monitoring system which consisted of wrist type-blood pressure measurement, smart-phone and u-healthcare server is presented. And the analog circuit architecture which is major core function for pulse wave detection and digital hardware architecture for wrist type-blood pressure measurement is presented. Also for software development to operate this hardware system, UML analysis method and flowcharts and screen design for this software design are showed. Therefore such design method in my paper is expected to be useful for real-time blood pressure monitoring u-healthcare system implementation.

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.

Empirical Initial Scantling Equations on Optimal Structural Design of Submarine Pressure Hull

  • Oh, Dohan;Koo, Bonguk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The submarine is an underwater weapon system which covertly attacks the enemy. Pressure hull of a submarine is a main system which has to have a capacity which can improve the survivability (e.g., protection of crews) from the high pressure and air pollution by a leakage of water, a fire caused by outside shock, explosion, and/or operational errors. In addition, pressure hull should keep the functional performance under the harsh environment. In this study, optimal design of submarine pressure hull is dealt with 7 case studies done by analytic method and then each result's adequacy is verified by numerical method such as Finite Element Analysis (FEA). For the structural analysis by FEM, material non-linearity and geometric non-linearity are considered. After FEA, the results by analytic method and numerical method are compared. Weight optimized pressure hull initial scantling methods are suggested such as a ratio with shell thickness, flange width, web height and/or relations with radius, yield strength and design pressure (DP). The suggested initial scantling formulae can reduce the pressure hull weight from 6% and 19%.

Study on the Quantitative Rod Internal Pressure Design Criterion (정량적인 핵연료봉 내압 설계기준에 관한 연구)

  • Kim, Kyu-Tae;Kim, Oh-Hwan;Han, Hee-Tak
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.363-373
    • /
    • 1991
  • The current rod internal pressure criterion permits fuel rods to operate with internal pressures in excess of system pressure only if internal overpressure does not cause the diametral gap enlargement. In this study, the generic allowable internal gas pressure not violating this criterion is estimated as a function of rod power. The results show that the generic allowable internal gas pressure decreases linearly with the increase of rod power. Application of the generic allowable internal gas pressure for the rod internal pressure design criterion will result in the simplication of the current design procedure for checking the diametral gap enlargement caused by internal overpressure because according to the current design procedure the cladding creepout rate should be compared with the fuel swelling rate at each axial node at each time step whenever internal pressure exceeds the system pressure.

  • PDF

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Study on the relief design for the fault current of polymer arrester (폴리머 피뢰기의 고장전류에 대한 방압 설계기술에 관한 연구)

  • Kim, In-Sung;Park, Hoy-Yul;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1717-1719
    • /
    • 1999
  • The chief advantage of polymer arrester. from design of pressure relief, anti-contamination, electrical failure was reduced by outdoor polymer housing. In the first for development of pressure relief design for polymer arrester, fault current and surge were studied through experiments of electrical. Designed the FRP inner tube and unit modules for pressure relief housing. Tested the performance of unit modules for pressure relief of polymer arrester, and the result was successful. The pressure relief of polymer arrester depend on design pattern of diamond shape and ellipse. Study on the pressure relief of FRP inner tube for outdoor polymer arrester. Designed and manufactured FRP inner tube of polymer arrester. Tested the fault current of polymer arrester per 10 kA, 10 cycle.

  • PDF

Design of Port Plate in Gerotor Pump for Reduction of Pressure Pulsation

  • Kim Sang-Yeol;Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1626-1637
    • /
    • 2006
  • The pressure pulsation due to the gear geometry of the gerotor (generalized rotor) pump mainly occurs in an instant that the chamber of the gerotor enters the delivery port and leaves the suction one. Such a pressure pulsation may result in undesirable vibration and noise of pump components as well as cavitation in hydraulic system. Therefore, it is very important to examine the pressure characteristic of the gerotor pump at its design and analysis stages. In this paper, in order to reduce the pressure pulsation in the gerotor pump, the port plate with the relief grooves is designed by referring to as notch of vane pump and relief groove of piston pump. A series of the theoretical analyses on the pressure pulsation is performed in consideration of various design parameters of the port plate, including the installation positions of the port inlet/outlet and the groove width, and the operating conditions such as rotational velocity and delivery pressure.

Dynamic Earth Pressure on Embedded Structure

  • Sadiq, Shamsher;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • Dynamic earth pressure is considered an important parameter in the design of embedded structures. In current engineering design simplified methods developed either for yielding or non-yielding structures are utilized to predict resultant dynamic pressure. The applicability of these equations to embedded structures have not yet been reported. In this study we perform a suite of equivalent linear time history analysis for a range of embedded structure configurations. Numerically calculated dynamic pressure is shown to depend on the flexibility ratio (F), aspect ratio (L/H) of the embedded structure, and ground motion. Increase in L/H and intensity increases the magnitude of dynamic pressure. An increase in F decreases the dynamic pressure. Overall, the trends highlight the need for development of new method that accounts for F and L/H to calculate the dynamic pressure for the performance-based design of embedded structures.

Effect of Design Factors in a Pump Station on Pressure Variations by Water Hammering (가압 펌프장에서 설계인자들이 수격에 의한 압력변동에 미치는 영향)

  • Park, Jong-Hoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.15-27
    • /
    • 2021
  • In this study, the effect of design factors in a pump station on the pressure variations which are the main cause of water hammering has been investigated by numerical simulations. As design factors, the flow rate, Young's modulus, diameter, thickness, roughness coefficient of pipeline are considered. The relationships between the pressure variations and the design factors are analyzed. The results show that the pressure variation increases sensitively with the flow rate and Young's modulus, and increases gradually with the thickness and roughness coefficient of pipe, whereas it decreases with the pipe diameter. The wavelength of the pressure wave becomes longer for a smaller Young's modulus, a smaller pipe thickness and a bigger pipe diameter. These relationships are nondimensionalized, and logarithmic curve-fitted functions are proposed by regression analysis. Most effective factors on the nondimensional pressure variation is Young's modulus. Flow rate, roughness coefficient, relative thickness and pipe diameters are the next impact factors.