• Title/Summary/Keyword: design of the experiments

Search Result 6,511, Processing Time 0.046 seconds

Optimal Parameter Design for Al/SiC Composites using Design of Experiments (실험계획법에 의한 Al/SiC 복합재료의 최적공정 설계)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-76
    • /
    • 2011
  • In this work, the parameter optimization for thermal-sprayed Al/SiC composites have been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA). Al/SiC composites were fabricated by flame spray process on steel substrate. The hardness of composites were measured using micro-vickers hardness tester, and these results were analyzed by ANOVA. The ANOVA results showed that the oxygen gas flow, powder feed rate and spray distance affect on the hardness of the Al/SiC composites. From the ANOVA results, the optimal combination of the flame spray parameters could be extracted. It was considered that experimental design using orthogonal array and ANOVA was efficient to determine optimal parameter of thermal-sprayed Al/SiC composites.

Aspects of Process Variables in Stamping Press Lines

  • Ko, Je-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1299-1307
    • /
    • 2006
  • This study investigates solving production problems in an automotive stamping plant using Finite Element (FE) analysis. The fundamentals of stamping, metal plasticity and FE analysis are developed. In this paper, we provide the basis for a simulation of the stamping of a production part, the automotive rear floorpan. On-plant factorial Design of Experiments (DoE) were simulated using the floorpan model. The accuracy of the simulations was undetermined because of variability in the DoE results. Predictions of flange shape, wrinkling and thickness show qualitative agreement with manufactured parts and indicate that simulating an industrial part is feasible.

  • PDF

Approach to Compositional Effect on Properties of Aspherical Optical Glass for GMP Process with Design of Experiments (실험계획법에 의한 GMP용 비구면 광학유리의 성질에 미치는 조성의 효과 연구)

  • Maeng, Jee-Hun;Kim, Hyeong-Jun;Jung, Ah-Reum;Kim, Jong-Cheol;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • In this study, the composition of optical glass for GMP(glass molding process) was designed with 'Design of Experiments' method. All the composition batch was performed by 'Create Factorial Design' method. Particularly, $SiO_2$, BaO and $Al_2O_3$ were chosen major parameters for investigating the effects of components on optical and thermal properties. BaO and $Al_2O_3$ strongly influenced on optical and thermal properties, respectively. Finally, the approximate values of desired optical and thermal values were obtained by microtuning of compositions. At the composition of $BaO:Al_2O_3:SiO_2$=10:4:48 (molar ratio), refractive index($n_d$) was 1.5833, coefficient of thermal expansion(CTE) was $104{\times}10^{-7}/^{\circ}C$.

Rotor Pole Shape Design for Reducing a Cogging Torque in Spoke Type BLDC Motor (코깅 토오크 저감을 위한 Spoke형 BLDC 전동기의 회전자 극 형상설계에 관한 연구)

  • Hwang, Kyu-Yun;Rhee, Sang-Bong;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.860-868
    • /
    • 2007
  • In this paper. design of spoke type BLDC motor which have a characteristics of concentrating fluxes and relatively high reluctance torque among IPM BLDC motors has been researched. To reduce cogging torque and torque ripple. rotor pole shape of optimal design is proposed. To clearly see the effects due to the changed rotor pole shape. magnetic circuit model. 2D FEM and design of experiments (DOE) are used. Then considering these results proper rotor pole shape which have an good effect on air gap flux density and cogging torque. back-emf is designed. Moreover. the validity of proposed model in this paper is also verified by comparison between gained experiment and analysis data.

Improving Process Stability Using Design of Experiments

  • Ko, Je-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.633-645
    • /
    • 2006
  • The sheet metal stamping process continues to be a challenge to the field of science and engineering. The focus of this paper is to gain a better understanding of the sheet metal stamping process. By using Finite Element analysis and Design of Experiments, we are trying to analyze the stamping variables and determine which ones influence the stamping operations most.

  • PDF

Design Optimization of an Automotive Vent Valve Using Kriging Models (크리깅 모델을 이용한 자동차용 벤트 밸브의 최적설계)

  • Park, Chang-Hyun;Lee, Young-Mi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2011
  • In this study, the specifications of the components of the vent vale were optimally determined in order to enhance the performance of the vent valve. Design objective was to minimize fuel leakage while satisfying the design constraints on the performance indices. To obtain the optimum solution based on real experiments, several design techniques available in PIAnO, a commercial PIDO tool, were used. First, an orthogonal array was used to generate training design points and then real experiments were performed to measure the experimental data at the training design points. Next, Kriging metamodels for the objective function and design constraints were generated using the experimental data. Finally, a genetic algorithm was employed to obtain the optimization results using the Kriging models. Fuel leakage of the optimized vent valve was found to be reduced by 95.8% compared to that of the initial one while satisfying all the design constraints.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Recent Advances in Fluid Film Bearings and Dampers for Turbomachinery (터보기계에 적용되는 유체 윤활 베어링 및 댐퍼의 최신 연구 동향)

  • Yi, Howon;Jung, Hyunsung;Kim, Kyuman;Lee, Chanwoo;Lim, Homin;Sin, Seki;Choi, Seungho;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.215-231
    • /
    • 2020
  • The paper presents extensive survey and review of experimental and analytical researches on fluid film bearings and squeeze film dampers (SFDs) for turbomachinery available in open literature (major archival international journals) published recently (2018 and 2019 only). Over 60 published research works are reviewed based on the research topics and objectives, the types of bearings, size of bearings, and main design parameters with a brief summary of experiments and/or predictions in each work. Some important findings and general observations about the experimental and/or predictive data are also presented. There are several major trends observed throughout the survey. A large portion of the papers focuses on bearing surface textures and effect of operating and assembly conditions on static and/or dynamic forced performances, as well as bearing surface roughness and wear patterns. Researches on geometry of orifices and recesses in hydrostatic (or hybrid) bearings, as well as bearing system stability predictions using thermohydrodynamic analysis and computational fluid dynamics (CFD), are considered as significant topics. Studies on SFDs mainly focus on experimental identification of force coefficients for various SFD geometries and sealing conditions. Reliable experiments of fluid film bearings and SFDs along with the development of experimentally benchmarked predictive tools enable reinforcement of the path for reliable implementations of the bearing components into high performance rotating machinery operating at extreme and harsh conditions. The extensive list of sources of recent experiments in the available open literature is a welcome addition to the analytical community to gauge the accuracy of predictive tools.