• Title/Summary/Keyword: design of improved ground

Search Result 227, Processing Time 0.027 seconds

Probability-based design charts for stone column-improved ground

  • Deb, Kousik;Majee, Anjan
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.539-552
    • /
    • 2014
  • A simplified probability-based design charts for stone column-improved ground have been presented based on the unit cell approach. The undrained cohesion ($c_u$) and coefficient of radial consolidation ($c_r$) of the soft soil are taken as the most predominant random variables. The design charts are developed to estimate the diameter of the stone column or the spacing between the stone columns by employing a factored design value of $c_r$ and $c_u$ so as to satisfy a specific probability level of the target degree of consolidation and/or a target safe load that needs to be achieved in a specified timeframe. The design charts can be used by the practicing engineers to design the stone column-improved ground by considering consolidation and /or bearing capacity of the improved ground.

Improvement Effect on Design Parameters by Pressure Grouting Applied on Micro-piling for Slope Reinforcement (가압식 마이크로파일로 보강된 사면의 설계인자 개량효과)

  • Hong, Won-Pyo;Han, Hyun-Hee;Choi, Yong-Ki;Hong, Ik-Pyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.163-170
    • /
    • 2005
  • In this paper, the rock bolts, soil nails with filling grout and the micro-piling with injecting grout by pressure were applied for the stabilization of the cut slopes consisting of sedimentary rocks, igneous rocks and metamorphic rocks respectively. The field measurements and 3-D FEM analyses to find out mobilized tensile stresses of the grouted-reinforcing members installed in the drilled holes were executed on each site. With assuming the increments of the cohesive strength in the improved ground, the back analysis using direct calibration approach of changing the elastic modulus of the ground was used to find out the improved elastic modulus which yields the same tensile stresses from field measurements. The results of back analysis show that the elastic modulus of the improved ground were 4 to 6 times as large as the elastic modulus of original ground. Consequently, the design for slope reinforcement to be more rational, it is proposed that not only the improved cohesive strength is to be used in the incremental ranges on well-known previous proposed data, but also the increased elastic modulus which is about 5 times as large as the original elastic modulus is to be considered in design.

  • PDF

Study on Estimation of Equivalent Circle of Plastic Board Drain (PBD의 유효등가경 평가에 관한 연구)

  • You, Seung-Kyong;Lee, Choong-Ho;Yoon, Gil-Lim;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.490-496
    • /
    • 2006
  • In order to design accurately plastic board drain (PBB) method, it is important to determine the equivalent circle of PBD. In this paper, a series of numerical analyses on soft ground improved by PBD were carried out, in order to investigate the resonable equivalent circle of PBD considering consolidation behavior of improved soft ground by PBD. The applicability of numerical analyses, in which an elasto-viscoplastic three-dimensional consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of soft ground improved by PBD. And, through the results of the numerical analyses, consolidation behaviors of soft ground during consolidation was elucidated, together with the equivalent circle of PBD considering consolidation behaviors.

  • PDF

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Study on Stress Sharing Mechanism Composition Ground Improved by SCP with Low Replacement Area Ratio (저치환율 SCP에 의한 복합지반의 응력분담 메커니즘에 관한 연구)

  • You, Seung-Kyong;Matsui, Tamotsu;Hong, Won-Pyo;Yoon, Gil-Lim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.197-202
    • /
    • 2004
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

  • PDF

The Study on The Numerical Analysis Method for Ground Improved by Cement Mixing Method (시멘트혼합처리공법이 적용된 지반의 수치해석 방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2018
  • Since the composite ground design method is easy to apply for calculation or numerical analysis, it is applied to the design of cement mixing methods. However, the comparison studies between analysis and actual results such as a trial test and construction for the cement mixing method are few because the composite ground design method was developed for the compaction pile (SCP, GCP) methods. In this study, the results of various analysis methods, such as the composite ground analysis method (1 case) and the individual pile method (3 cases), were compared with actual measurements through a two-dimensional finite element numerical analysis. In case of the surface settlements, the results of study show that the individual plate method was larger than the actual measurements, while other methods are similar. The settlements at the under ground of the improved area is overestimated in all analysis methods. When comparing numerical analysis results for the horizontal displacement, and ground reaction forces, the individual pile method in equivalent wall concept was found to be the most similar to the measurements. The composite ground method was not able to predict the behavior of stress transfer (Arching effect) and it turned out that the prediction of horizontal displacement was too large.

A Case study of Ground Treatment for Container Terminal Site Formation with Full Dredging and Replacement Method (완전준설 치환공법에 의한 컨테이너 부지조성 사례)

  • Hong, Eui;Sim Dong-Hyun
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.235-247
    • /
    • 2006
  • A ground treatment work for Hongkong container terminal yard is reported as a case study of site formation work with full dredging and replacement method. Ground treatment work adopting surcharge and deep compaction (vibroflotation) were applied to improve the sand creep potential. The sand creep parameter of 0 25% was assumed in design stage and improved up to 0.05% and 0.02% after surcharge and deep compaction respectively

  • PDF

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

A Study on the Behavior of the Retaining Walls with the Improved Top-Down Support System using the Building Structure (건축 구조체를 이용한 개량 역타공법 적용시 흙막이 벽체의 거동 연구)

  • Chun, Byung-Sik;Roh, Bae-Young;Do, Jong-Nam;Rew, Woo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1666-1672
    • /
    • 2008
  • In this study, it collected and analyzed a construction case of the improved top-down support system application field on a case by case retaining wall method. The behavior of horizontal displacement was analyzed according to retaining wall type after reviewing a design stage and estimated horizontal displacement under the construction. The study results showed that it is judged stable until excavation termination irrelevant to a retaining wall method at the improved top-down support system application. It is judged that the settlement of behind ground can minimize because the retaining wall head displacement also behave stably. It was compared the predicted horizontal displacement in design and the measured horizontal displacement acquired through a measurement by using Elasto-Plastic analysis program. The comparison results showed that a similar horizontal displacement was predicted within stability standard irrelevant to a retaining wall method. So, it is decided that the advanced prediction is reasonable by Elasto-Plastic analysis in design applied the improved top-down support system. In the case of the ground anchor method application under a same condition, it is decided that a horizontal displacement will more increase than the improved top-down support system is applied. If a section condition is same, it was decided that to apply top-down support system is more stable than that.

  • PDF

Comparison Study on Stress Sharing Characteristics of Sand or Gravel Compaction Piles with Low Replacement Area Ratio (모래와 쇄석을 이용한 저치환율 다짐말뚝공법의 응력분담특성에 관한 비교)

  • You, Seung-Kyong;Cho, Sung-Min;Kim, Ji-Yong;Shim, Min-Bo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.443-452
    • /
    • 2005
  • The compaction pile methods with low replacement area ratio used sand(SCP) or gravel(GCP) has been usually applied to improvement of soft clay deposits. In order to design accurately compaction pile method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP and GCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which and elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And,through the results of the numerical analyses, each mechanical behaviors of compaction piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between compaction piles and clays.

  • PDF