• 제목/요약/키워드: design objective

검색결과 6,791건 처리시간 0.029초

프리스트레스트 콘크리트 박스 거더 교량의 최적설계에 관한 연구 (A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges)

  • 노금래;윤희택;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.139-149
    • /
    • 2000
  • In the preliminary design stage of prestressed concrete (PSC) box girder bridges, the design factors decided by inexperience designer could heavily affect to the results of final design. There is a possibility that the design ends up with an excessively wasteful design. To achieve an economical design with preventing an excessive design, the optimal design technique has been developed using ADS optimal program and SPCFRAME in this study. The objective function for the optimal design problem is the material cost of box girders and constrained functions are constituted with design specifications and workability. The Sequential Unconstraint Minimization Technique (SUMT) is used for the optimal design in this study. We designed an uniform cross-section bridge and an ununiform cross-section bridge in the same design condition by optimal design technique developed in this study. Analyzing the results obtained for various tendon layouts, we suggest a standard tendon layout which gives the most effective structural behavior.

  • PDF

국가 산.학.연 협력 연구개발을 위한 과제목표관리 정보시스템의 설계 및 효과 분석 (The Design & Effect Analysis of Project Objective Management Information System for National R&D cooperated by Industries, Universities and Government-supported research institutes)

  • 손권중;유왕진;이철규
    • 기술혁신연구
    • /
    • 제16권1호
    • /
    • pp.107-139
    • /
    • 2008
  • We studied how to achieve successful implementation of massive research and development projects requiring collaboration among industries, universities and government-supported research institute. We have set up an engineering process innovation model to be deemed most adequately for all practical purposes, relying on the theoretical studies on the merits and analysis of the effect of the information system based on Milestone Management, Work Breakdown Structures and Web, which is known to be effective for research project (schedule) management and the objective management, and implemented a real-world web-based project objective management system. After a review of various R & D Project Schedule Management methods, we found that this information system was very compatible with project objective management. This project objective management information system carries out research and development projects effectively and efficiently, getting together in cyber-space and sharing information, and has been equipped with an Early Warning Subsystem to allow for pre-analysis and timely response to potential problems arising from the course of the project. The system also contains an Executive Information System that in real time, automatically provides the management information required by managers with the rate of project progress (achievement, fulfillment and delay). Lastly, actual progress can be cross-checked through both on-line objective management on the web-based information system and design review meeting held on site, to improve the efficiency and validity of the information system. Moreover, overall effect was analyzed through questionnaires on how well the system and generated information meet requirements and on the ultimate impact of the system upon objective management and communication. The questionnaire on the system effect revealed that the information system was useful to objective management and communication, and that the quality of the system was more than acceptable as well.

  • PDF

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System)

  • 남윤의;마사토 이노우에;하루오 이시가와
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계 (The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure)

  • 이준배;김태윤
    • 센서학회지
    • /
    • 제6권1호
    • /
    • pp.6-15
    • /
    • 1997
  • 이 논문은 빔의 구조를 갖거나 멤브레인의 구조를 갖는 써모파일 센서의 다목적 최적설계에 관한 연구이다. 연구대상의 써모파일 센서는 $Si_{3}N_{4}/SiO_{2}$ 박막위에 알루미늄과 다결정 실리콘을 사용하여 열전쌍을 형성하고, 박막중심부에 $RuO_{2}$를 사용하여 적외선 흡수부를 만들어 중심부와 실리콘림부 사이의 온도차이에 따른 Seebeck 효과에 의한 유기전압을 감지하는 센서를 대상으로 하였다. 최적설계의 목적함수는 센서의 감도, 검출능 (detectivity) 및 열시정수를 대상으로 하였다. 패키지를 고려하여 모델링을 하였으며, 기존의 식의 고찰에 의한 단순 설계방법이 아닌 수학적 계획법을 사용한 다목적 최적화 방법을 이용하여 최적해를 구하였다. 최종적인 최적설계 수식화에는 퍼지계획법에서 사용되는 소속함수를 정의하여 설계자가 우선적으로 신뢰할 수 있는 해를 구 할 수 있도록 하였다. 또한, 제한조건으로서 주위 온도변화에 따른 센서의 출력전압변화를 포함시켜 실제 사용되는 환경을 고려하였다.

  • PDF

친환경 패션 제품의 객관적.주관적 속성 평가 연구 (A Study on the Evaluation of Environment-friendly Fashion Product Attributes - Focused on the Objective and the Subjective Attributes -)

  • 유지헌;김민경
    • 한국의상디자인학회지
    • /
    • 제14권2호
    • /
    • pp.113-125
    • /
    • 2012
  • This study aims to understand the evaluation of importance, satisfaction and repurchase intention after dividing the attributes of environment-friendly fashion product in details. Out of 400 surveys, 328 were used in the final analysis of this study, with 113 respondents having experience of buying Environment-friendly fashion products. The analysis of this study is done by SPSS 18.0(ver.). Through the literature review, the objective attributes were subdivided into seven factors, including brand, environment-friendly materials, quality, environment-friendliness when using/managing, environment-friendliness when discarding, color/pattern, and environment-friendly design. Though an empirical study, the subjective attributes were subdivided into three factors, including innovation/individuality, practicality, and dignity/popularity. In the analysis results of the importance of the attributes of environment-friendly fashion products, it was shown that it was considered as importance as above average. The effect of the satisfaction of the objective attributes on the repurchase intention was measured. In the results, the regression model was significant while it was understood that the satisfaction of environment-friendly materials, environment-friendliness when discarding, color/pattern and environment-friendly design had positive effect on the repurchase intention. The effect of the satisfaction of the subjective attributes of environment-friendly fashion products on the repurchase intention was measured. In the results, dignity/popularity and innovation/individuality factors had positive effect on the repurchase intention.

  • PDF

지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화 (Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm)

  • 이주희;유근열;박경우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.

국내 PBD 기반 설계를 위한 강구조 구조내화설계 구축방향에 관한 연구(I) (A Research Direction of Structural Fire Resistance Design of Steel Structures for Recommendation of PBD in Korea)

  • 권영진;이재영
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.229-234
    • /
    • 2008
  • Performance based fire engineering design is being adopted around the world as a rationed means of providing efficient and effective fire safety in Building. This development is being supported by the adoption of performance based codes which specify the objective and minimum performance requirements for fire safety traditional design for fire safety which is still practiced in many countries, relies on "prescriptive" codes which specify how a building is to be built, which no statement of objective and little or no opportunity to offer more rational alterative design. It is the aim of this study to investigate and analyze the research direction of structural fire resistance design of steel structures for recommendation of PBD in Korea.

  • PDF

압전 수정진동자의 설계민감도 해석과 위상 최적설계 (Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators)

  • 하윤도;조선호;정상섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.