• Title/Summary/Keyword: design objective

Search Result 6,773, Processing Time 0.032 seconds

Multi-Objective Fuzzy Optimization of Structures (구조물에 대한 다목적퍼지최적화)

  • Park, Choon-Wook;Pyeon, Hae-Wan;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.503-513
    • /
    • 2000
  • This study treats the criteria, considering the fuzziness occurred by optimization design. And we applied two weighting methods to show the relative importance of criteria. This study develops multi-objective optimization programs implementing plain stress analysis by FEM and discrete optimization design uniformaly. The developed program performs a sample design of 10-member steel truss. This study can carry over the multi-objective optimization based on total system fuzzy-genetic algorithms while performing the stress analysis and optimization design. Especially, when general optimization with unreliable constraints is cannot be solve this study can make optimization design closed to realistic with fuzzy theory.

  • PDF

Optimal Design of Outrigger Damper using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 아웃리거 댐퍼의 최적설계)

  • Kim, Hyun-Su;Yoon, Sung-Wook;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.97-104
    • /
    • 2014
  • Recently, a concept of damped outrigger system has been proposed for tall buildings. Structural characteristics and design method of this system were not sufficiently investigated to date. In this study, control performance of damped outrigger system for building structures subjected to seismic excitations has been investigated. And optimal design method of damped outrigger system has been proposed using multi-objective genetic algorithm. To this end, a simplified numerical model of damped outrigger system has been developed. State-space equation formulation proposed in previous research was used to make a numerical model. Multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the outrigger damper. Based on numerical analyses, it has been shown that the damped outrigger system control dynamic responses of the tall buildings subjected to earthquake excitations in comparison with a traditional outrigger system.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

Computer-Aided Optimal Grillage Design by Multiple Objective Programming Method (다목적함수(多目的函數) 최적화(最適化) 기법(技法)에 의한 격자형(格子型) 구조물(構造物)의 최적설계(最適設計))

  • S.J.,Yim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • From the engineering point of view, a synthesis as well as an analysis technique is explored to search for the improved design of grillage which is common in ship structure. As an approximate analysis method for the grillage, an interaction reaction method is developed and compared with the finite element method. It is found that the discrepancy between these two methods is so negligible that the percent method could be used effectively for the grillage analysis. As an optimization technique, a feasible direction method could be used is combined with the intersection reaction method in order to design a minimum weight optimal grillage. The feasible direction method shows a good numerical performance although it requires more calculation times compared with the direct search method. Finally, the application of multiple objective optimization method to grillage is investigated in order to resolve conflicts existed between the multiple objectives which is a common characteristic of structure design problem. Goal programming method is extended to handle a nonlinear property of constraints and objective functions. It seems that the nonlinear goal programming could help not only to establish a relative importance of each objective, but also enable the designer to choose the best combination of design variables.

  • PDF

Optical Design of a Lister Objective Stable Against Chromatic Variation for 405-nm Wavelength (파장 405 nm에서 파장변화에 안정화된 Lister 대물렌즈 설계)

  • Kim, Jin-Hyung;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.295-303
    • /
    • 2020
  • A Lister objective of NA 0.25 and 10×, stabilized against chromatic variation for a wavelength of 405 nm is designed. We develop a new solution for stabilizing a cemented doublet that has specified axial thicknesses. Using the new method, we can easily obtain a useful design for some practical purpose. At the initial design stage, two cemented doublets corrected independently are used. The stabilizing conditions for the whole system are maintained during optimization. The final design of the Lister objective shows that the chromatic variation of EFL, BFL, and RMS wavefront errors are very small at the 405-nm wavelength, as expected.

A study on the costume arts and Suprematism expressed in Malevich's "Victory over the Sun" (말레비치의 "Victory over the Sun"에 표현된 절대주의 예술 의상 연구)

  • Park, Yoon-Jeong
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • This study analyzed how Kruchenikh's opera, "Victory over the Sun", performed in Saint Petersburg, Russia, in 1913, contributed to the birth of Malevich's Suprematism in 1915, and how the forms and features of the costumes were expressed in the opera's content. The results of the study are as follows: First, the theoretical background of the opera, "Victory over the Sun" was limited to Suprematism and non-objective art, which was divided into analytical cubism, cubo-futurism, and Uspensky's four-dimensional concept of space. Second, to reveal that Suprematism, appeared in the form of non-objective abstract art, was possible with the set and costume design of "Victory over the Sun," the set design was analyzed. Third, to reveal that Malevich's Suprematism was influenced by "Victory over the Sun," the study considered the characteristics of Suprematism in "Victory over the Sun". Finally, Malevich's Suprematism art costumes expressed in "Victory over the Sun" were divided into geometric spatial structures, images of black & white, mechanical human images, and images of warriors and the characteristics of each costume were considered. Malevich's "Victory over the Sun" showed a significant impact not only on the birth of Suprematism but also on the development of the non-objective art & costumes.

Seismic design of steel frames using multi-objective optimization

  • Kaveh, A.;Shojaei, I.;Gholipour, Y.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.211-232
    • /
    • 2013
  • In this study a multi-objective optimization problem is solved. The objectives used here include simultaneous minimum construction cost in term of sections weight, minimum structural damage using a damage index, and minimum non-structural damage in term of inter-story drift under the applied ground motions. A high-speed and low-error neural network is trained and employed in the process of optimization to estimate the results of non-linear time history analysis. This approach can be utilized for all steel or concrete frame structures. In this study, the optimal design of a planar eccentric braced steel frame is performed with great detail, using the presented multi-objective algorithm with a discrete population and then a moment resisting frame is solved as a supplementary example.

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

Optimal Design of Medical Bed Head Consol Considering the Strength Condition (의료용 베드 헤드 콘솔의 강도조건을 고려한 최적 설계)

  • Byon, Sung-Kwang;Choi, Ha-Young;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • Medical bed head consoles (BHC) are generally used to increase the efficiency of medical equipment and speed the medical treatment response time. The BHC design has been consistently improved including a movable shelf unit that is embedded to mount stably medical instruments on the lower part of the main console. The cost of a BHC can be reduced through design optimization to limit the overall weight. However, as the size of a head console might decrease due to design optimization, the BHC deflection could be increased. In this study, multi-objective optimal design was adopted to consider this BHC design problem. In order to reduce the cost of optimization planning, an approximate model was applied for the design optimization. In the context of approximate optimization, we used the response surface method and non-dominant sorting genetic algorithm developed from various fields. Multi-objective optimal solutions were also compared with a single objective optimal design.

Robust Optimal Damper Design of Structures with Modal Uncertainty Using Multi-Objective System Identification (다목적 시스템식별을 이용한 모우드 불확실성이 있는 구조물의 강인 최적 감쇠기 설계)

  • Jeong, Seong-Woon;Ok, Seung-Yong;Park, Won-Suk;Koh, Hyun-Moo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.76-85
    • /
    • 2012
  • This paper proposes a robust damper design technique for adjacent structures against model uncertainty. This approach introduces multi-objective optimization based system identification using measurement information which enables reasonable selection of the perturbation range in the robust design. Moreover, in order to improve the numerical efficiency in sampling the structural models required for the robust design of large structures, we define new objective functions which enable us to minimize the number of candidate models suitable to the purpose of the robust design. In addition, the performance index is newly employed to evaluate the robust performance of the sampled structural models, and the robust design has been performed according to the performance index. As a numerical example to demonstrate the efficiency of the proposed method, 5-story and 10-story two adjacent buildings are taken into account, and the existing and newly proposed robust design approaches are compared with each other. The results demonstrate that the proposed approach can guarantee more robust damper system only using small number of samples of the structural models because of using the measurement information which leads to improvement in the numerical efficiency, compared with the existing robust design methods.