• Title/Summary/Keyword: design forces

Search Result 2,246, Processing Time 0.027 seconds

Research on Forces and Dynamics of Maglev Wind Turbine Generator

  • Wang, Nianxian;Hu, Yefa;Wu, Huachun;Zhang, Jinguang;Song, Chunsheng
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • Maglev wind turbine generator (MWTG) technology has been widely studied due to its low loss, low maintenance cost, and high reliability. However, the dynamics of the magnetic bearing system differ fromthe those of the traditional mechanical bearing system. A horizontal axial MWTG supported with a permanent magnetic bearing is designed in this research and the radial forces and the natural frequencies of the rotor system are studied. The results show that the generatorhas a cyclical magnetic forceand an unreasonable bearing stiffness may mean that the rotor system needs to work in the resonance region; the bearing stiffness is the key factor to avoid this problem. This is the main rule of the bearing stiffness design in the MWTG, and this rule can also be used in other maglev permanent magnet motors.

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석)

  • 김병삼;이성철
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Downburst versus boundary layer induced wind loads for tall buildings

  • Kim, Jongdae;Hangan, Horia;Eric Ho, T.C.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.481-494
    • /
    • 2007
  • Downbursts are transient phenomena that produce wind profiles that are distinctly different from synoptic boundary layers. Wind field data from Computational Fluid Dynamics (CFD) simulations of isolated downburst-like impinging jets, are used to investigate structural loads of tall buildings due to these high intensity winds. The base shear forces and base moments of tall buildings of heights between 120 and 250 m produced by downburst winds of various scales are compared with the forces from the equivalent boundary layer gust winds, with matched 10-metre wind velocity. The wind profiles are mainly functions of the size of the downburst and the radial distance from the centre of the storm. Wind forces due to various downburst profiles are investigated by placing the building at different locations relative to the storm center as well as varying the size of the downburst. Overall it is found that downbursts larger than approx. 2,000 m in diameter might produce governing design wind loads above those from corresponding boundary layer winds for tall buildings.

The source identification of noise & vibration using characteristics of vibro-acoustic transmission (진동-음향 전달특성을 이용한 진동 및 소음원의 규명)

  • Oh, Jae-Eung;Kim, Dong-Sup;Kim, Woo-Taek;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.495-499
    • /
    • 2000
  • The booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Thus the engine mounting system must be cautiously designed to reduce the noise. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To effectively use the method, the concept of 'effectiveness' is introduced to identify the contributions of each vibration sources and transmission paths to interior noise. When the magnitudes and phases of the forces due to the engine vibration are changed, the synthesized interior booming noise level is predicted by the vector synthesis diagram. Thus, the optimum characteristics of the forces are obtained through the simulations of the vector synthesis analysis. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

  • PDF

Economics of Antagonistic Conflict Between Political Forces in Korea: Expansion (한국의 정치세력 간 적대적 갈등의 경제학: 확장)

  • Lee, Jongmin
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.3
    • /
    • pp.217-227
    • /
    • 2020
  • Purpose - Against the backdrop of the recent intense political conflict in Korea's political circles, it is to reveal from an economic point of view the hidden aspects behind the hostile conflict between the two political forces. Design/methodology/approach - This paper is not a normative study to find a solution to political conflict, but a positive study to reveal the mechanism of reciprocity that exists between the two parties of conflict in real politics. Therefore, the analysis is based on game theory methodology. Findings - It is shown that the ruling party should choose a level of preemptive response that is neither insufficient nor excessive if it aims to avoid radical anti-government struggles by opposition parties. We also find that even if the chances of success of the opposition's radical offensive struggle are low, the use of that strategy is not necessarily reduced. In addition, we have obtained comparative static results that do not deviate much from our intuition. What's interesting is that unlike our intuition that the choice of the method will be indifferent if the marginal effects of radical and normal methods of struggle are the same, the opposition party rather chooses the normal method of struggle more often. Research implications or Originality - In forming the analytical model, it reflected the support of the general public following the opposition's struggle against the ruling party in order to capture real politics well in the conflict between the two opposing parties.

Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage

  • Wang, Shitan;Wang, Yunyi
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.315-325
    • /
    • 2022
  • Background: Firefighters are required to carry self-contained breathing apparatus (SCBA), which increases the risk of musculoskeletal disorders. This study assessed the newly recruited firefighters' internal forces and potential musculoskeletal disorders when carrying SCBA. The effects of SCBA strap lengths were also evaluated. Methods: Kinematic parameters of twelve male subjects running in a control condition with no SCBA equipped and three varying-strapped SCBAs were measured using 3D inertial motion capture. Subsequently, motion data and predicted ground reaction force were inputted for subject-specific musculoskeletal modeling to estimate joint and muscle forces. Results: The knee was exposed to the highest internal force when carrying SCBA, followed by the rectus femoris and hip, while the shoulder had the lowest force compared to the no-SCBA condition. Our model also revealed that adjusting SCBA straps length was an efficient strategy to influence the force that occurred at the lumbar spine, hip, and knee regions. Grey relation analysis indicated that the deviation of the center of mass, step length, and knee flexion-extension angle could be used as the predictor of musculoskeletal disorders. Conclusion: The finding suggested that the training of the newly recruits focuses on the coordinated movement of muscle and joints in the lower limb. The strap lengths around 98-105 cm were also recommended. The findings are expected to provide injury interventions to enhance the occupational health and safety of the newly recruited firefighters.