• Title/Summary/Keyword: design forces

Search Result 2,246, Processing Time 0.033 seconds

Driving Mechanism of Tapered Pistons in Bent-Axis Design Axial Piston Pumps

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 2003
  • In order to assure the quality of the bent axis design axial piston pumps driven by tapered pistons, it is necessary to know the characteristics of force applied to tapered pistons and the mechanism for driving the tapered pistons. Since they are able to perform both reciprocating and spinning motions in cylinder block, it is difficult to understand the driving mechanismand-tomeasure the forces applied to tapered pistons experimentally In the present study, the theoretical mechanism for driving the tapered pistons is studied by use of the geometric method. The driving area of the tapered pistons is measured by measuring the strain of a cylinder forced against a tapered piston using an electric strain gauge and a slip ring. The forces applied to tapered pistons is also investigated with the change of discharge pressure and the rotational speed. As a results of this investigation, it is concluded that the cylinder block is driven by one tapered piston in a limited area and the driving area is changed due to space angle of the tapered pistons and the swivel angle of the cylinder block. It is also observed that the force applied to tapered pistons increases as the discharge pressure and the rotational speed increase.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 2: Debonding of plates due to shear and design rules

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.505-518
    • /
    • 2000
  • A major cause of premature debonding of tension face plates is shear peeling (Jones et al. 1988, Swamy et al. 1989, Ziraba et al. 1994, Zhang et al. 1995), that is debonding at the plate ends that is associated with the formation of shear diagonal cracks that are caused by the action of vertical shear forces. It is shown in this paper how side plated beams are less prone to shear peeling than tension face plated beams, as the side plate automatically increases the resistance of the reinforced concrete beam to shear peeling. Tests are used to determine the increase in the shear peeling resistance that the side plates provide, and also the effect of vertical shear forces on the pure flexural peeling strength that was determined in the companion paper. Design rules are then developed to prevent premature debonding of the plate ends due to peeling and they are applied to the strengthening and stiffening of continuous reinforced concrete beams. It is shown how these design rules for side plated beams can be adapted to allow for propped and unpropped construction and the time effects of creep and shrinkage, and how side plates can be used in conjunction with tension face plates.

Pretension process control based on cable force observation values for prestressed space grid structures

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.739-753
    • /
    • 2010
  • Pointing to the design requirement of prestressed space grid structure being the target cable force, the pretension scheme decision analysis method is studied when there's great difference between structural actual state and the analytical model. Based on recursive formulation of cable forces, the simulative recursive system for pretension process is established from the systematic viewpoint, including four kinds of parameters, i.e., system initial value (structural initial state), system input value (tensioning control force scheme), system state parameters (influence matrix of cable forces), system output value (pretension accomplishment). The system controllability depends on the system state parameters. Based on cable force observation values, the influence matrix for system state parameters can be calculated, making the system controllable. Next, the pretension scheme decision method based on cable force observation values can be formed on the basis of iterative calculation for recursive system. In this way, the tensioning control force scheme that can meet the design requirement when next cyclic supplemental tension finished is obtained. Engineering example analysis results show that the proposed method in this paper can reduce a lot of cyclic tensioning work and meanwhile the design requirement can be met.

A Design and Manufacture of 6-Component Load Cell (6분력계의 설계와 제작에 관한 연구)

  • Kim, H.;Kim, J.S.;Song, M.;Rhyu, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.20-26
    • /
    • 1997
  • A 6-component load cell (Fx=Fy=Fz=10Kg, Mx=My=Mz=1Kg-m)) is designed and manufactured. Basic mechanism of the operation is measuring strains coresponding to pure bending stresses, at certain portions of the device, due to forces and moments given. Wheastone bridge is used for the strain measurement and the amplified output signals from the bridge are decoupled to give the real forces and moments by using the influence coefficient matrix obtained through the calibration. Based on the result of the calibration test, the developed load cell is believed to be quite accurate and reliable. We also believe that the design experience provided us 'With essential information for future design of various types of conventional or object oriented force measuring device.

  • PDF

Optimal design for face milling cutter by simulation

  • Kim, J.H.;Lee, B.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • Based on the cutting force model, three-dimensional optimal design model was developed and optimal designed tool which is minimized cutting force is developed by computer simulation technique. In this model the objective function which is minimized resultant cutting force was used and the variables are radial rake angle, axial rake angle, lead angle of the tool. The cutting forces using conventional and optimal tools by simulation, are compared and analyzed in time and frequency domains. In time domain the cutting force of optimal tool in feed direction was more reduced and less fluctuated than that of conventional tool. Cutting forces of optimal tool in X-and Z-directions are shown a little increased than those of conventional tool. In frequency domain amplitude of insert frequency components of optimal tool in feed direction was more reduced than that of convent- ional tool. The amplitudes of insert frequency components of optimal tool in X-and Z-direction are a little increased than those of conventional tool. As the reduction of amplitude and fluctuations of the cutting force, Optimal tool is considered that tool life and surface roughness would be improved, and stable cutting would be expected.

  • PDF

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

The Source Identification of Noise Using Characteristics of Transmission and the Reduction of Interior Noise for Changing the Input Factor (전달특성을 이용한 소음원 규명과 입력요소 변경에 의한 실내소음 저감)

  • Lee, You-Yub
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1254-1261
    • /
    • 2007
  • The structure has several types of noise and booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To use this method effectively, the concept of Multi-dimensional-analysis and Experimental Design are introduced to identify the contributions of each vibration sources and transmission paths to interior noise. It was used 3inputs/1output system and found the magnitudes and phases of the forces for minimizing the noise. Finally, the synthesized interior booming noise level is predicted by the vector synthesis diagram. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.