• Title/Summary/Keyword: design flow

Search Result 8,758, Processing Time 0.034 seconds

Pipe Design for Hydraulic System in Construction Heavy Equipment by Numerical Analysis (수치해석을 통한 건설중장비 유압시스템용 파이프설계에 대한 연구)

  • Shin, Yoo In;Yi, Chung Seob;Han, Sung Gil;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.64-71
    • /
    • 2019
  • We herein propose a systematic design method of hydraulic pipes used in heavy construction equipment. We found that even though many design studies have been conducted regarding major hydraulic components such as pumps, cylinders, and control valves, studies regarding the optimal design of hydraulic pipes are scarce. In this study, the design of four types of pipes is considered: two high-pressure and two low-pressure pipes. First, fluid flow analysis was conducted based on oil flow and pressure for various radii of curvature. For a check-valve pipe, we considered the location of an inlet pipe. We could visualize fluid flow inside the pipe according to the flow velocity and pressure distribution. Based on fluid flow analysis, we conducted a structural analysis that revealed the stress distribution and concentration for each pipe design. We selected the best design parameters for each pipe design, fabricated the pipes, and subsequently tested them for validity.

A Suggestion and a Contribution for the Improvement of Axiomatic Design (공리적 설계 이론 향상을 위한 제언)

  • Choi, Duk-Hyun;Hwang, Woon-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.970-976
    • /
    • 2004
  • For a long time, design methodologies strive to systematize the design process in order to make the practice more efficient and effective. One of such methodologies is Axiomatic Design. However, this design theory still has some problems and is not completely settled. In this paper, the new issue for the non-linear design in Axiomatic Design is suggested and the representation of system architecture by flow chart is corrected. In the case that the design equation varies as a function of the variation of DP ($\delta$DP), the design should be regarded as the nonlinear design because the design equation is not a constant. When system architectures are represented by a flow chart, all systems could not be independently represented. However, by adding the notation of the end of decoupling to the notations using in flow chart, those can be independently represented.

A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger (박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구)

  • Oh, Kook-Taek;Kim, Hong-Won;Ghal, Sang-Hak;Ha, Ji-Soo;Ryu, Seung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

Application of Navier-Stokes Equations to Aerodynamic Design of Two-Dimensional Axial-Flow Compressor Blades (2차원 축류압축기 블레이드의 공력설계를 위한 Navier-Stokes방정식 적용 연구)

  • Chung, H.T.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.15-20
    • /
    • 1998
  • An integrated computing system has been developed for a Navier-Stokes design procedure of an axial-flow compressor blades. The process is done on the four separate steps, i.e., determination of the basic profiles, generation of computational grids, cascade flow simulation and analysis of the computed results in design sense. Applications are made to the blade design of the LP compressor. Computational results are analyzed with respect to the flow-field characteristics and are compared with the expected design requirements. The present system are coupled with the design procedure of the turbomachinery blades using the Navier-Stokes technique.

  • PDF

Steam Turbine Design Using 3-Dimensional Flow Analysis (3차원 유동 해석을 이용한 증기 터빈 설계)

  • Kwon, G.B.;Kim, Y.S.;Cho, S.H.;Im, H.S.;Nah, U.H.;Kim, H.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.312-317
    • /
    • 2000
  • High efficient steam turbine stage has been developed with the help of the 3-dimensional design tool. In this stage design, the compound leaned stacking method has been adopted to reduce the secondary flow loss of a turbine passage and to increase the performance efficiency for the turbine nozzles. And the turbine buckets have been designed with the quasi-3-dimensional turbomachinery blade design method. To verify the stage design, therefore, the 3-dimensional numerical simulation of a steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the turbulent flow of a steam turbine stage. The analysis was performed in parallel calculation using the HP N4000 8 CPUs machine. The result showed CFX-TASCflow could be used as the 3-dimensional flow analysis tool of steam turbine design.

  • PDF

Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 2 - Air Flow Distribution (항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 2 - 공기 유량 배분)

  • Kim, Daesik;Ryu, Gyong Won;Hwang, Ki Young;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.61-67
    • /
    • 2013
  • This study introduces the design methods for air flow distribution at the level of preliminary design, and reviews the typical combustion process and main functions of sub-components of aircraft gas turbine combustors. There are lots of design approaches and empirical equations introduced for air flow distributions at the combustors. It is shown that a decision on which design approaches work for the combustor development is totally dependent upon the objective of engine design, target performance, and so on. The current results suggested for preliminary air flow distributions need to be validated by combustor geometry checkups and performance evaluations for future works.

Flow Path Design of Large Steam Turbines Using An Automatic Optimization Strategy (최적화 기법을 이용한 대형 증기터빈 유로설계)

  • Im, H.S.;Kim, Y.S.;Cho, S.H.;Kwon, G.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.771-776
    • /
    • 2001
  • By matching a well established fast throughflow code, with standard loss correlations, and an efficient optimization algorithm, a new design system has been developed, which optimizes inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid throughflow code based on streamline curvature method is suitable for fast and accurate flow calculation and performance prediction of a multistage axial flow turbine. A general purpose hybrid constrained optimization package, iSIGHT has been used, which includes the following modules: genetic algorithm, simulated annealing, modified method of feasible directions. The design system has been demonstrated using an example of a 5-stage low pressure steam turbine for 800MW thermal power plant previously designed by HANJUNG. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency.

  • PDF

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion (워터제트 선박추진용 사류펌프의 설계 및 성능해석)

  • Yoon, Eui-Soo;Oh, Hyoung-Woo;Ahn, Jong-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

A Numerical Study on Flow through a Cross Flow Fan: Effect of Blade Shapes on Fan Performance (직교류 홴의 유동 해석: 깃 형상 변화가 성능에 미치는 영향)

  • Hur, Nahm-Keon;Kim, Wook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.96-102
    • /
    • 1999
  • Cross flow fans are used in various applications, especially in industrial ventilation applications and in room air conditioners, due to their superior performance characteristics. Unlike radial and/or axial fans, the design of cross flow fans have been mostly based on earlier experiences and experiments. In the present study, numerical computations of flow fields through a cross flow fan used in room air conditioner are performed to investigate the detailed flow fields and to study the effect of the blade shape on performance curves to aid better design of the fan. Despite some discrepancies between the two results, it is seen from the present study that the computational results agree quite well with the qualitative experimental results. It is also shown from the present study that by having a different shape of blade, it is possible to achieve about $15\%$ increase in flow rates. The stimulating results of the present study can be used in the design of high performance cross flow fans with the use of optimal design algorithm and experimental verifications.

  • PDF