• 제목/요약/키워드: design fire

검색결과 1,657건 처리시간 0.053초

VR기법을 활용한 엘리베이터 피난 성능평가에 관한 연구 (Study for Using VR Techniques Performance Evaluation of the Elevator Evacuation)

  • 노세호;윤성욱;이동호
    • 한국화재소방학회논문지
    • /
    • 제25권1호
    • /
    • pp.13-18
    • /
    • 2011
  • 방재설계를 하는데 있어서 피난의 주체인 재실자가 화재시 신속하고 안전하게 피난 가능 하도록 피난방법의 최적으로 정립하는 것이 핵심적 사항이다. 건설 기술의 발전으로 많은 초고층 건축물이 세워지고, 초고층 건축물은 다양한 위험을 내포하고 있으며 재해의 정도를 증대시키고 있다. 초고층 건축물의 기본 설계 단계에서, 화재시 재실자가 피난 계단과 엘리베이터를 동시에 시용하여 피난하는 것을 고려 할 수 있으나, 이러한 피난 계단과 엘리베이터를 동시에 이용안 대피 성능 평가는 적립되어 있지 않다. 본 연구에서는 Virtools를 이용한 VR 기법을 사용하여 화재시 재실자가 비상 엘리베이터 및 피난계단을 동시에 이용하여 피난 할 경우에 대한 대피성능평가를 시뮬레이션을 통하여 분석하였다.

재하된 H형강 휨재의 열응력해석을 이용한 한계온도 산정 (Calculation of Limit Temperature on H-Beam Flexural Member Through the Thermal Stress Analysis under the Lateral Load)

  • 윤성기;이치형;구본훈
    • 한국강구조학회 논문집
    • /
    • 제27권4호
    • /
    • pp.387-397
    • /
    • 2015
  • 국내의 내화성능평가는 대부분 사양적설계 방법인 품질시험을 통해 이뤄지고 있다. 하지만 시험 특성상 많은 비용과 시간을 요구하며 다양한 건축구조에 대한 내화성능평가에는 어려움이 많다. 따라서 본연구에서는 성능적 설계를 위한 연구로 유한요소 구조해석 프로그램인 ABAQUS를 사용해 H형강 휨재를 대상으로 변수에 따른 열응력 해석을 통해 내화성능을 검토하며, 하중비별 한계온도를 제안한다.

Slab panel vertical support and tensile membrane action in fire

  • Abu, Anthony K.;Burgess, Ian W.;Plank, Roger J.
    • Steel and Composite Structures
    • /
    • 제8권3호
    • /
    • pp.217-230
    • /
    • 2008
  • The increasing use of performance-based approaches in structural fire engineering design of multi-storey composite buildings has prompted the development of various tools to help quantify the influence of tensile membrane action in composite slabs at elevated temperatures. One simplified method which has emerged is the Bailey-BRE membrane action method. This method predicts slab capacities in fire by analysing rectangular slab panels supported on edges which resist vertical deflection. The task of providing the necessary vertical support, in practice, requires protecting a panel's perimeter beams to achieve temperatures of no more than $620^{\circ}C$ at the required fire resistance time. Hence, the integrity of this support becomes critical as the slab and the attached beams deflect, and large deflections of the perimeter beams may lead to a catastrophic failure of the structure. This paper presents a finite element investigation into the effects of vertical support along slab panel boundaries on the slab behaviour in fire. It examines the development of the membrane mechanism for various degrees of edge-beam protection, and makes comparisons with predictions of the membrane action design method and various acceptance criteria.

대형 복합건물을 대상으로 하는 소방관 팀 훈련용 시뮬레이터 개발 (A Team-based Firefighter Training Simulator for Complex Buildings)

  • 이재경;차무현;최병일;김태성
    • 한국CDE학회논문집
    • /
    • 제16권5호
    • /
    • pp.370-379
    • /
    • 2011
  • The increasing complexity of complex buildings, such as high-rise buildings and underground subway stations, presents new challenges to firefighters. In a fire in complex buildings, the importance of the collaboration between firefighters is clear. The increased demand on firefighter training for such environment is now evident. Due to cost, time, and safety issues, it is impossible to experience a real fire in such environments for training. In addition, the use of real fire for training does not enable repeatable training and the evaluation of the training is difficult. We developed a team-based firefighter training simulator for complex buildings using the virtual reality technology. It provides the training and evaluation of firefighting and mission-based team training. To model real fire phenomena in virtual space, a numerical analysis method based on fire dynamics is used. To achieve an immersive virtual environment, an augmented reality technique for the compensation of real world image and a haptic technique for heat experience are adopted. The developed training simulator can help the firefighter to respond to large and complex firefighting scenarios, while maintaining the safety of the trainees.

Boundary Conditions and Fire Behavior of Concrete Filled Tubular Composite Columns

  • Rodrigues, Joao Paulo C.;Correia, Antonio J.M.;Kodur, Venkatesh
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.313-325
    • /
    • 2018
  • Concrete-filled steel tubular (CFST) members are commonly used as composite columns in modern construction. However, the current guidelines for members' fire design (EN1994-1-2) have been proved to be unsafe in case the relative slenderness is higher than 0.5. In addition, the simplified design methods of Eurocode 4 are limited to circular and square CFST columns, while in practice columns with rectangular and elliptical hollow sections are being increasingly used because of their architectural aesthetics. In the last years a large experimental research has been carried out at Coimbra University on the topic. They have been tested concrete filled circular, square, rectangular and elliptical hollow columns with restrained thermal elongation. Some parameters such as the slenderness, the type of cross-section geometry as well as the axial and rotational restraint of the surrounding structure to the column have been tested in order to evaluate their influence on the fire resistance of such columns. In this paper it is evaluated the influence of the boundary conditions (pin-ended and semi-rigid end-support conditions) on the behavior of the columns in case of fire. In these tests it could not be seen a marked effect of the tested boundary conditions but it is believed that the increasing of rotational stiffness increases the fire resistance of the columns.

건축물의 화재안전설계를 위한 각국의 내·외장재 기준 비교 연구 (Comparative Study on the Standards of Internal and External Materials of Each Country for Fire Safety of Buildings)

  • 허예림;김윤성;이병흔;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.170-171
    • /
    • 2021
  • In Korea, the concentration of cities has led to the high-rise and deep-rise of buildings. In the case of such high-rise buildings, there is a high risk of fire, and the number of internal fires expanding to the outside continues to increase. The Korean Building Act continues to change the ban on combustible exterior materials, and combustible exterior materials are currently not available for buildings with three stories or more than 9 meters, and detailed test standards for finishing materials are also strengthened after the Ulsan residential and commercial fires in 2020. However, the path of fire in the actual building is through a series of processes in which the fire in the compartment grows internally and expands through openings supplied with ventilation factors. Therefore, other than just external materials, design criteria for embedded materials also need to be established. The purpose of this study is to compare standards for internal and external materials at home and abroad and to secure basic data for fire safety design of buildings based on them.

  • PDF

IoT 제품의 품질 개선을 위한 결함관리 설계에 관한 연구 (Study for Design of Defect Management to Improve the Quality of IoT Products)

  • 김재경;최영숙;조경록;이은서
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권6호
    • /
    • pp.229-236
    • /
    • 2022
  • 사물인터넷을 기반으로 실시간으로 소화기 주변의 상태와 화재 발생 여부, 소화기의 상태를 확인할 수 있는 웹 시스템과 화재 알림을 받을 수 있는 애플리케이션을 구현한다. 해당 시스템의 목표를 명확하게 정하고 구조를 상세히 정의함으로써 개발 도중 일어나는 오류를 최소화한다. 또한, 스마트소화기에 대한 요구분석과 설계, 구현 단계에서 제품 결함을 찾아내고 그 원인을 분석하여 결함을 줄이는 방법을 제안한다. 제안하는 연구를 통해 IoT 기반의 스마트 소화기에 대해 결함관리 신뢰성을 확보할 수 있다.

소방서를 대상으로 한 그린리모델링 용도 확대 가능성 분석에 관한 연구 (A Study on the Possibility of Expanding the Use of Green Remodeling for Fire Stations)

  • 정상헌;오진환;배상무;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This study aims to investigate the possibility of expanding the support program for green remodeling of fire stations and analyze the standard design guidelines. Green remodeling is essential for reducing greenhouse gas emissions and promoting green buildings, but currently, it is only conducted for buildings with limited purposes. In this study, we conduct green remodeling for fire stations with severe aging to demonstrate energy performance improvement and investigate the potential for expanding the support program to other types of aging buildings. The research methodology includes analysis of previous studies, preliminary investigation and alternative setting, energy analysis, calculation of construction costs, evaluation of the possibility of introducing support programs, and examine of the fire station standard design guidelines. The research results confirm that green remodeling can reduce energy consumption in fire stations and present the possibility of including fire stations as targets in the support program for green remodeling of public buildings.

Concept Design of Fire Safety Module for SV20 Service in the Korean e-Navigation System

  • Kim, Byeol;Moon, Serng-Bae;Hwang, Kwang-Il
    • 한국항해항만학회지
    • /
    • 제42권5호
    • /
    • pp.323-330
    • /
    • 2018
  • The Korean e-Navigation system is a Korean approach to correspond with implementation of IMO e-Navigation. It provides five services, among them SV20 service, a ship remote monitoring system that collects and processes sensor information related to fire, navigation, and seakeeping performance safety. The system also detects abnormal conditions such as fires, capsizing, sinking, navigation equipment failure during navigation, and calculates the safety index and determines the emergency level. According to emergency level, it provides appropriate emergency response guidance for the onboard operator. The fire safety module is composed of three sub-modules; each module is the safety index sub-module, the emergency level determination sub-module and emergency response guidance sub-module. In this study, operational concept of the fire safety module in SV20 service is explained, and fire safety assessment factors are estimated, to calculate the fire safety index. Fire assessment factors included 'Fire detector position factor,' 'Smoke diffusion rate factor,' and 'Fire-fighting facilities factor.'

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.