• Title/Summary/Keyword: design fire

Search Result 1,657, Processing Time 0.027 seconds

Application of CFD Method to Performance Prediction of Fire-Suppression System for Electric Power Utilities (발전설비용 소화시스템의 성능 예측을 위한 CFD기법 적용 연구)

  • Chung, H.T.;Bae, K.Y.;Kim, C.H.;Jeong, I.S.;Bae, J.S.;Han, Y.S.;Kim, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.296-299
    • /
    • 2008
  • In the present research, the exclusive analysis system based on the CFD method were suggested to predict the fire-suppression performance of water mist fire-suppression equipments for design applications. The computing scope is ranged from starting pump to fire-suppression equipments, composed of three parts that calculation of flow rate and pressure distribution at each nozzle, examining of spray performance and predicting of fire-suppression performance in the fire space. Application were done to the fire-suppression system for electric power generation plants. The results were analyzed by comparison between numerical results and initial design conditions in terms of thermal and fluid mechanics.

  • PDF

A Study on the Need for Improvement of Fire Resistance Design in Underground Parking Lot due to Electric Vehicle Fire (전기자동차 화재에 따른 지하주차장 내화설계 개선 필요성 검토)

  • Kim, Hae-na;Park, Jun-Seo;Shin, Joung-Hyeon;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.235-236
    • /
    • 2022
  • Electric vehicle fires in underground parking lots are very dangerous, but it is judged that the current related laws and regulations do not change, which will cause problems. As a result of the analysis for the purpose of providing an electric vehicle in an underground parking lot, fire-resistance coating is essential as it can cause an explosion in the building members made of high-strength concrete when an electric vehicle fire occurs in an underground parking lot. Since a fire occurs, it is necessary to prevent electric vehicles from parking adjacent to each other.

  • PDF

A Study on the Analysis of Evacuation Risk by Building Application for Fire Safety (화재안전을 위한 건축물 용도별 피난리스크 분석에 관한 연구)

  • Jin, Seung-hyeon;Koo, In-Hyuk;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.164-165
    • /
    • 2021
  • In Korea, in the case of fire scenarios in performance design, it is assumed that the sprinkler is not working. In addition, it does not applicate various fire conditions. Therefore it is not enough that the accuracy about fire scenario. In foreign countries, reseach is being conducted to predict the casualities that can occur due to fire in the building space through statistical risk analysis. Also, research is consistently conducting for design that consider the sprinker probability of operation. Therefore, to analyze the fire risk of each building in Korea, the risk was analyzed using statistical data. As a result, the risk of casualties that can occur for each building use was analyzed as 0.6(persons/cases) for residential buildings, 0.25(persons/cases) for sales facilities, and 0.12(persons/cases) for buisiness facilities.

  • PDF

Proposals on the Input Data Standardization Needs of Fire and Evacuation Simulation in Performance Based Design (성능위주 화재와 피난시뮬레이션 입력데이터의 표준화 필요성에 대한 제안)

  • Jang, Keun Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • National performance-based design methods and prescribed standards for various input data not defined as separated regulation, ASET and RSET fire and evacuation simulations on the data cited by different designers. This is also directly connected reliability problems for the evacuation simulation and performance-based fire. standardizing the various input to performance-based fire and evacuation simulations of a similar risk, regardless of the experience of designer or technical skills. The performance-based targets proper fire-fighting and emergency equipment installed reasonable initial investment cost to done ensure safety.

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Development of Eire-lighting and Rescue Robot for Outdoor Environment using Target Oriented Design Methodology (목표지향설계 개념을 이용한 실외화재진압 및 인명구조 로봇의 개발)

  • Kim, Moon-June;Maolin, Jin;Lee, Jin-Oh;Chang, Pyung-Hun;Kim, Jong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • This paper presents the development of fire-fighting and rescue robot for Outdoor Environment. In the procedure of this development, we follow Target Oriented Design (TOD) which is recognized as the systematic methodology to design a system by specifying the target clearly. For some real fire fighting tasks (e.g. tasks in shopping street and a market), narrow road make it difficult for existing fire engine to access the firing place. On the other hand, for dangerous tasks (e.g. gasoline station and a storehouse) the explosive materials make it impossible for fire-fighters to access the firing place. Moreover, the smoke and the high-temperature caused by fire make fire fighting difficult. In this situation, the solution is to develop the fire-fighting and rescue robot. TOD is performed firstly by analyzing the environment properties of fro place and the demanded tasks and the fire-fighting and rescue robot is manufactured. For safety, the fire fighting robot should be controlled by remote operation to keep the operator away from the fire, and the control system is divided into three parts: the robot controllers, controller for remote operating device and wireless communication system. We have selected and developed appropriate hardware and software for each part of control system with considering TOD. As a result, the fire-fighting robot functions correctly and the performance and usefulness of our control architecture is validated by successfully performing some fire-fighting tasks.

A Study on the Fire Diffusion Model of Loadable Materials in Rack-Type Warehouse Using FDS (물류시설 적재가연물 FDS 를 통한 화재 확산 모델링에 관한 연구)

  • Yu Bin Joo;Eun Su Son;Sang Il Kim;Doo Chan Choi
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.672-681
    • /
    • 2024
  • Purpose: In order to secure a specific fire diffusion model, this study compares and analyzes the NIST UL standard application scenario and the performance-oriented design application scenario and examines the difference between the fire diffusion model and the surface fire model. Method: Temperature, visibility, and CO sensors were installed for each scenario using FDS, and the two scenarios were compared and analyzed through the changes. Result: As a result of analyzing the temperature, visibility, and CO for each scenario, the NIST UL standard application scenario is very similar to the actual fire, and the performance-oriented design application scenario shows a harsh fire situation. Conclusion: When designing fire safety for large buildings such as distribution warehouses, it is important to prepare comprehensive fire safety measures in consideration of both actual fire and harsh fire conditions.

Analysis of Performance-based Design Guides of Smoke Control System (성능위주 연기제어 설계지침 분석)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.6-13
    • /
    • 2016
  • With regard to smoke control system, the design guidelines of smoke exhaust for accommodation and smoke control for evacuation stairs and vestibule has been proposed domestically, but after reviewing the applicability to modern buildings that tend to be larger, higher and complex, a smoke control system according to domestic design guidelines might have difficulty in securing the safety from smoke in a fire. Therefore, it is necessary to adopt the performance-based design of a smoke control system that can enhance the safety and integrate the smoke control functions and design depending on the characteristics of fire and building structure in the case of fire in a large, high-rise, and complex building. This study analyzed the domestic design guidelines of a smoke control system and this paper proposes the part requiring improvement, and examines the legal system and guidelines on performance-based design of smoke control system in foreign countries.

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

Experimental Study on Combustion Characteristics of Live Fire Load in a Bookstore (서점의 적재가연물의 연소특성에 관한 실험적 연구)

  • Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.47-53
    • /
    • 2011
  • Fire load in buildings greatly contribute to the time and scale of fire according to the type and quantity of the fire load. Because bookstores have a large quantity of fire load compared with other buildings which may lead to large scale fires, however, their heat release characteristics have been hardly investigated. In this study, to obtain the data applicable for the performance-based fire safety design of bookstores, the specimens representing stacked fire loads were heated in a furnace in compliance with the standard heating curve of ISO834-1:1999 to investigate their heat release characteristics. From the experiment result, the combustion velocity and heat release rate required for performancebased fire safety designs are obtained.