• 제목/요약/키워드: design fire

Search Result 1,657, Processing Time 0.031 seconds

COMPARISON OF DESIGN & PERFORMANCE OF SPRINKLER SYSTEM IN KOREA FIRE CODE AND NATIONAL FIRE CODE

  • Kim, Won-K
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.610-616
    • /
    • 1997
  • One of the notable changes in Korean Industry in 1990's was globalization. Many of Korea plants have been built In the foreign countries and many of foreign plants have been build in Korea. And it is believed that many foreign insurance companies will begin their business in Korea soon, as Korea will open their insurance market to them. While sprinkler system plays very important role in total fire protection system, Korean sprinkler system design has not been studied in depth. Thus, it is not easy to convince the performance of Korean sprinkler system and compare it to NFPA 13, Standard for the Installation of Sprinkler System. Design guideline from both system will be listed and compared in detail. Fire water demand from both system will be reviewed to evaluate its adequacy. Water spray density and actuation time will be estimated, too.

  • PDF

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Investigating the Effect of Prior Damage on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames

  • Ronagh, Hamid Reza;Behnam, Behrouz
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.209-220
    • /
    • 2012
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings that have been partially damaged as a result of a prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels of two portal frames, after they are pushed to arrive at a certain level of displacement corresponding to the mentioned performance level. This investigation is followed by a fire analysis of the damaged frames, examining the time taken for the damaged frames to collapse. As a point of reference, a fire analysis is also performed for undamaged frames and before the occurrence of earthquake. The results indicate that while there is minor difference between the fire resistances of the fire-alone situation and the frames pushed to the IO level of performance, a notable difference is observed between the fire-alone analysis and the frames pushed to arrive at LS and CP levels of performance and exposed to PEF. The results also show that exposing only the beams to fire results in a higher decline of the fire resistance, compared to exposing only the columns to fire. Furthermore, the results show that the frames pushed to arrive at LS and CP levels of performance collapse in a global collapse mode laterally, whereas at the IO level of performance and fire-alone situation, the collapse mechanism is mostly local through the collapse of beams. Whilst the investigation is conducted for a certain class of portal frames, the results confirm the need for the incorporation of PEF into the process of analysis and design, and provide some quantitative measures on the level of associated effects.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 -주거 및 사무공간 가연물을 중심으로)

  • Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The design fire based on the heat release rate (HRR) of combustibles can significantly affect the assessment of fire safety in the performance-based design (PBD). In the present PBD, however, limited information in the foreign literature has been used without further verification due to the lack of fire information in domestic combustibles. The objective of this study is to provide information on the HRR and fire growth rate for various combustibles in residential and office spaces. To end this, the fire experiments were carried out with single and multiple combustibles. The peak HRR of combustibles used in the present study had a range of 36 kW~1,092 kW. The fire growth rates were also $0.003kW/s^2{\sim}0.0287kW/s^2$ and $0.003kW/s^2{\sim}0.0838kW/s^2$ for the residential and office spaces, respectively. In particular, a sofa had the highest fire risk in terms of the peak HRR and fire growth rate. Finally, a methodology for calculating the peak HRR in a space was proposed through correlation analysis between the peak HRR and exposed surface of various combustibles.

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

A Study on Rescue of the Human Life against the Fire in the High-rise Building (고층건물 화재시 인명구조 방법에 관한 연구)

  • Choi, Kwon-Joong
    • Korean Security Journal
    • /
    • no.5
    • /
    • pp.309-325
    • /
    • 2002
  • It was because mankind could use the fire that we have been civilized. creating a brilliant culture and developing an industrial society. While fire is very useful to our life, the number of the victims of fire continues to increase, This study suggests the ways to rescue the people safely when they are subject to a fire in a high-rise building. To this end, the concept of fire is reviewed. Fire breaks out when the conditions for congestion are met, and therefore. if any of the conditions can be blocked, the fire will be extinguished. In other words. the knowledge of such conditions will greatly help the fire fighters to rescue the people, and so. such conditions for congestion as flammable, heat, oxygen and chain reaction are examined. In addition, the effects of such by-products of fire as heat and smoke on human body are reviewed. In order to rescue the people more safely, the fire fighters are requested to review the situation and design a rescue strategy before being engaged in a full-scale rescue activity. This study discusses various rescue methods using such passages or equipments as stair case, double ladder, special fire fighting vehicle, elevator, jumar, rope, helicopter, etc. In conclusion. since it is more difficult to rescue the people from a high-rise building than from the ground, it is essential to design a rescue program not after fire but before it and thereby, minimize the number of victims.

  • PDF

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire (도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.551-555
    • /
    • 2009
  • This study is performed to apply a standard to evaluate fire protection assessment for tunnel structures when a fire breaks out in the road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in Korea. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore, we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate. At the end, Hydrocarbon modified curve applied as design fire model by using numerical analysis and presented design fire model and examined the effects of tunnel structures.

A Study on the Development of Evaluation Methods for Fire Risk Analysis of High-rise Building ((초)고층 건축물의 화재위험성 평가기법 개발에 관한 연구(I))

  • Kwon, Young-Jin;Shin, Yi-Chul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.223-228
    • /
    • 2008
  • Fire is recognized as a significant hazard in a service life of a structure. Therefore there is a clear need to provide an improved understanding of the performance of material and structures in fire and to provide clear design guidance in order to progress safety design especially high rise building. It is the aim of this study to investigates and analyze the study on the development of evaluation methods for fire risk analysis of high-rise building.

  • PDF