• Title/Summary/Keyword: design effect formula

Search Result 212, Processing Time 0.026 seconds

The Development of Design Formulas for Pipe Loops Used in Large Vessels(II) (대형 선박의 파이프 루프 설계식 개발(II))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

Development of shear capacity equations for RC beams strengthened with UHPFRC

  • Mansour, Walid;Sakr, Mohammed;Seleemah, Ayman;Tayeh, Bassam A.;Khalifa, Tarek
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.473-487
    • /
    • 2021
  • The review of the literature and design guidelines indicates a lack of design codes governing the shear strength of reinforced concrete (RC) beams strengthened with ultrahigh-performance fiber-reinforced concrete (UHPFRC). This study uses the results of a 3D finite element model constructed previously by the authors and verified against an experimental programme to gain a clear understanding of the shear strength of RC beams strengthened with UHPFRC by using different schemes. Experimental results found in the literature along with the numerical results for shear capacities of normal-strength RC and UHPFRC beams without stirrups are compared with available code design guidelines and empirical models found in the literature. The results show variance between the empirical models and the experimental results. Accordingly, proposed equations derived based on empirical models found in the literature were set to estimate the shear capacity of normal-strength RC beams without stirrups. In addition, the term 'shear span-to-depth ratio' is not considered in the equations for design guidelines found in the literature regarding the shear capacity of UHPFRC beams without stirrups. Consequently, a formula estimating the shear strength of UHPFRC and RC beams strengthened with UHPFRC plates and considering the effect of shear span-to-depth ratio is proposed and validated against an experimental programme previously conducted by the authors.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.

A Sensitivity Analysis of Model Parameters involved in Clark Method on the Magnitude of Design Flood for urban Watersheds (CLARK 유역추적법에 의한 계획홍수량 산정에 미치는 매개변수의 민감도 분석)

  • Yoon, Kwang-Wonn;Wone, Seog-Yeon;Yoon, Yong-Nam
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 1994
  • A Sensitivity analysis on the model parameters involved in the Clark watershed routing method is made to demonstrate the effect of each parameter on the magnitude of 50-year design flood for small urban streams. As for the rainfall parameter the time distribution pattern of design storm was selected. For short duration storms Huff, Yen & Chow and Japanese Central type distributions were selected and the Mononobe distribution of 24-hour design storm was also selected and tested for Clark method application. The effect of SCS runoff curve number for effective rainfall and the methods of subbasin division for time-area curve were also tested. The routing parameter, i.e. the storage constant(K), was found to be the dominating parameter once design storm is selected. A multiple regression formula for K correlated with the drainage area and main channel slope of the basin is proposed for the use in urban stream practice for the determination of design flood by Clark method.

  • PDF

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

Effect of N Value and Pile Length Ratio on Bearing Capacity Distribution of Cohesionless Soil (사질토 지반에서 N값과 말뚝의 길이비가 지지력 분담 특성에 미치는 영향)

  • Lee, Kwang-Wu;You, Seung-Kyong;Han, Jung-Geun;Park, Jeong-Jun;Kim, Ki-Sung;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This study describes the evaluation results of pile length ratio and N value on the bearing capacity of drilled shafts in cohesionless soil. The bearing capacity ratio in Meyerhof's formula is affected only by the length ratio, and it is equally evaluated a sharing ratio of the end bearing capacity and the skin friction. NAVFAC's formula shows that the pile length influences both end bearing capacity and the skin friction, but pile length is also found to be a more influence factor on the end bearing capacity. Especially, it was found that the effect of pile length factor was larger than the effect of N value and pile diameter. FHWA's formula was evaluated to reflect the influence factor by skin friction more positively than other formulas at calculation the bearing capacity. It was also confirmed that the influence of the skin friction is larger when the ultimate bearing capacity is evaluated.

Computer Simulation for Gradual Yellowing of Aged Lens and Its Application for Test Devices

  • Kim, Bog G.;Han, Jeong-Won;Park, Soo-Been
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • This paper proposes a simulation algorithm to assess the gradual yellowing vision of the elderly, which refers to the predominance of yellowness in their vision due to aging of the ocular optic media. This algorithm employed the spectral transmittance property of a yellow filter to represent the color appearance perceived by elderly people with yellow vision, and modeled the changes in the color space through a spectrum change in light using the yellow filter effect. The spectral reflectivity data of 1269 Munsell matte color chips were used as reference data. Under the standard conditions of a D65 illuminant and a $10^{\circ}$ observer of 1964 CIE, the spectrum of the 1269 Munsell colors were processed through the yellow filter effect to simulate yellow vision. Various degrees of yellow vision were modeled according to the transmittance percentage of the yellow filter. The color differences before and after the yellow filter effect were calculated using the DE2000 formula, and the color pairs were selected based on the color difference function. These color pairs are distinguishable through normal vision, but the color difference diminishes as the degree of yellow vision increases. Assuming 80% of yellow vision effect, 17 color pairs out of $(1269{\times}1268)/2$ pairs were selected, and for the 90% of yellow vision effect, only 3 color pairs were selected. The result of this study can be utilized for the diagnosis system of gradual yellow vision, making various types of test charts with selected color pairs.

Performance Characteristics of Hydro-mechanical Transmission and Design Parameters for Type Selection (정유압-기계식 변속기의 성능 특성과 형식 선정을 위한 설계 변수)

  • Sim, Dong-Guk;Kim, Kyeong-Uk;Han, Jung-Soo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2011
  • Market demand for hydro-mechanical transmission (HMT) for agricultural tractors has increased recently. To select a type of HMT satisfying design conditions, performance characteristics of 12 HMT types must be understood. This study was conducted to provide tractor engineers with a guideline to select the most appropriate HMT type for their design requirements. Characteristics on speed reduction ratio, power transmission efficiency, power regeneration, lock-up angular velocity, output torque ratio and torque ratio of planetary gear train axis of the 12 HMT types were investigated and presented as either formula or graphical forms. A guideline to select proper HMT type was also presented using 2 parameter: lock-up angular velocity (${\omega}_L$) and torque ratio of the planetary gear train axis. In addition, effect of gear ratio of the planetary gear train on the power transmission efficiency was investigated and a guideline to select the best gear ratio was also presented.

Secondary Optics Design of Dissymmetrical Light Distribution for 100 W LED Safety Luminaires (100 W급 LED 보안 등기구용 비대칭 배광의 2차 렌즈 설계)

  • Shin, Ik-Tae;Yang, Jong-Kyung;Lee, Dong-Jin;Par, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.471-476
    • /
    • 2010
  • This paper has studied dissymmetrical light distribution design using the secondary optics in the simulation. fundamental Lambertian radiation distribution based on LED has been cut off by the secondary optics, and the first surface slope of lens and second surface slope of total reflection area have been calculated through formula. PMMA (the index of refraction: 1.49361) which is material of lens has been selected. critical angle($42.02993^{\circ}$) between Air and PMMA has been calulated by snell's law, and total reflection angle slope has been selected about $16.67^{\circ}$ to occur the total reflection. when the first surface slope and the second surface slope has been set up, Rays of all total reflection area have generated the total reflection. finally, designed LED Module has been estimated by Korean Industrial Standards for LED safety street lighting. dissymmetrical light distribution have been analyzed with reached effect of road illuminance, and average road illuminance which are each 70.6 lx, 40.35 lx, and 25.88 lx have been satisfied with Korean Industrial Standards for LED safety street lighting.

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.