• Title/Summary/Keyword: design computing

Search Result 2,914, Processing Time 0.032 seconds

AJFCode: An Approach for Full Aspect-Oriented Code Generation from Reusable Aspect Models

  • Mehmood, Abid;Jawawi, Dayang N.A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1973-1993
    • /
    • 2022
  • Model-driven engineering (MDE) and aspect-oriented software development (AOSD) contribute to the common goal of development of high-quality code in reduced time. To complement each approach with the benefits of the other, various methods of integration of the two approaches were proposed in the past. Aspect-oriented code generation, which targets obtaining aspect-oriented code directly from aspect models, offers some unique advantages over the other integration approaches. However, the existing aspect-oriented code generation approaches do not comprehensively address all aspects of a model-driven code generation system, such as a textual representation of graphical models, conceptual mapping, and incorporation of behavioral diagrams. These problems limit the worth of generated code, especially in practical use. Here, we propose AJFCode, an approach for aspect-oriented model-driven code generation, which comprehensively addresses the various aspects including the graphical models and their text-based representation, mapping between visual model elements and code, and the behavioral code generation. Experiments are conducted to compare the maintainability and reusability characteristics of the aspect-oriented code generated using the AJFCode with the most comprehensive object-oriented code generation approach. AJFCode performs well in terms of all metrics related to maintainability and reusability of code. However, the most significant improvement is noticed in the separation of concerns, coupling, and cohesion. For instance, AJFCode yields significant improvement in concern diffusion over operations (19 vs 51), coupling between components (0 vs 6), and lack of cohesion in operations (5 vs 9) for one of the experimented concerns.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

TCA: A Trusted Collaborative Anonymity Construction Scheme for Location Privacy Protection in VANETs

  • Zhang, Wenbo;Chen, Lin;Su, Hengtao;Wang, Yin;Feng, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3438-3457
    • /
    • 2022
  • As location-based services (LBS) are widely used in vehicular ad-hoc networks (VANETs), location privacy has become an utmost concern. Spatial cloaking is a popular location privacy protection approach, which uses a cloaking area containing k-1 collaborative vehicles (CVs) to replace the real location of the requested vehicle (RV). However, all CVs are assumed as honest in k-anonymity, and thus giving opportunities for dishonest CVs to submit false location information during the cloaking area construction. Attackers could exploit dishonest CVs' false location information to speculate the real location of RV. To suppress this threat, an edge-assisted Trusted Collaborative Anonymity construction scheme called TCA is proposed with trust mechanism. From the design idea of trusted observations within variable radius r, the trust value is not only utilized to select honest CVs to construct a cloaking area by restricting r's search range but also used to verify false location information from dishonest CVs. In order to obtain the variable radius r of searching CVs, a multiple linear regression model is established based on the privacy level and service quality of RV. By using the above approaches, the trust relationship among vehicles can be predicted, and the most suitable CVs can be selected according to RV's preference, so as to construct the trusted cloaking area. Moreover, to deal with the massive trust value calculation brought by large quantities of LBS requests, edge computing is employed during the trust evaluation. The performance analysis indicates that the malicious response of TCA is only 22% of the collaborative anonymity construction scheme without trust mechanism, and the location privacy leakage is about 32% of the traditional Enhanced Location Privacy Preserving (ELPP) scheme.

Numerical Study on Aerodynamic Performance of Counter-rotating Propeller in Hover Using Actuator Method (Actuator 기법을 이용한 제자리 비행하는 동축 반전 프로펠러 공력 성능에 관한 수치적 연구)

  • Kim, Dahye;Park, Youngmin;Oh, Sejong;Park, Donghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.30-44
    • /
    • 2021
  • Experimental investigation of counter-rotating propellers is subject to multiple time and cost constraint because of additional design parameters unlike single propeller. Also, a lot of computing time and resources are required for numerical analysis due to consideration of the interference between the upper and lower propellers. In the present study, numerical simulations were conducted to investigate the hover performance of counter-rotating propellers by using actuator method which is considered to be time-efficient. The accuracy of the present numerical methods was validated by comparing the ANSYS Fluent which is commercial CFD code. The axial spacing and rotational speed were selected as the analysis variables, and the aerodynamic performance was obtained under various conditions. Based on the obtained results, the Figure of Merit (FM) of single propeller and counter-rotating propellers and a prediction factor which enables prediction of counter-rotating propeller performance using a single propeller were derived to evaluate availability of the actuator method.

Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis

  • Markou, George;Bakas, Nikolaos P.
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.533-547
    • /
    • 2021
  • Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

A Design of Network Topology Discovery System based on Traffic In-out Count Analysis (네트워크 트래픽 입출량 분석을 통한 네트워크 토폴로지 탐색 시스템 설계)

  • Park, Ji-Tae;Baek, Ui-Jun;Shin, Mu-Gon;Lee, Min-Seong;Kim, Myung-Sup
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • With the rapid development of science and technology in recent years, the network environment are growing, and a huge amount of traffic is generated. In particular, the development of 5G networks and edge computing will accelerate this phenomenon. However, according to these trends, network malicious behaviors and traffic overloads are also frequently occurring. To solve these problems, network administrators need to build a network management system to implement a high-speed network and should know exactly about the connection topology of network devices through the network management system. However, the existing network topology discovery method is inefficient because it is passively managed by an administrator and it is a time consuming task. Therefore, we proposes a method of network topology discovery according to the amount of in and out network traffic. The proposed method is applied to a real network to verify the validity of this paper.

Improved Parameter Inference for Low-Cost 3D LiDAR-Based Object Detection on Clustering Algorithms (클러스터링 알고리즘에서 저비용 3D LiDAR 기반 객체 감지를 위한 향상된 파라미터 추론)

  • Kim, Da-hyeon;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.71-78
    • /
    • 2022
  • This paper proposes an algorithm for 3D object detection by processing point cloud data of 3D LiDAR. Unlike 2D LiDAR, 3D LiDAR-based data was too vast and difficult to process in three dimensions. This paper introduces various studies based on 3D LiDAR and describes 3D LiDAR data processing. In this study, we propose a method of processing data of 3D LiDAR using clustering techniques for object detection and design an algorithm that fuses with cameras for clear and accurate 3D object detection. In addition, we study models for clustering 3D LiDAR-based data and study hyperparameter values according to models. When clustering 3D LiDAR-based data, the DBSCAN algorithm showed the most accurate results, and the hyperparameter values of DBSCAN were compared and analyzed. This study will be helpful for object detection research using 3D LiDAR in the future.

Analsis Of Outliers In Real Estate Prices Using Autoencoder (Autoencoder 기법을 활용한 부동산 가격 이상치 분석)

  • Kim, Yoonseo;Park, Jongchan;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1739-1748
    • /
    • 2021
  • Real estate prices affect countries, businesses, and households, and many studies have been conducted on the real estate bubble in recent soaring real estate prices. However, if the real estate bubble prediction simply compares the real estate price, or if it does not reflect key psychological variables in real estate sales, it can be judged that the accuracy of the bubble prediction model is poor. The purpose of this study is to design a predictive model that can explain the real estate bubble situation by region using the autoencoder technique. Existing real estate bubble analysis studies failed to set various types of variables that affect prices, and most of them were conducted based on linear models. Thus, this study suggests the possibility of introducing techniques and variables that have not been used in existing real estate bubble studies.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.