• Title/Summary/Keyword: design comparison

Search Result 6,453, Processing Time 0.525 seconds

Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures

  • Heva, Yasintha Bandula;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.205-227
    • /
    • 2013
  • Current design standards do not provide adequate guidelines for the fire design of cold-formed steel compression members subject to flexural-torsional buckling. Eurocode 3 Part 1.2 (2005) recommends the same fire design guidelines for both hot-rolled and cold-formed steel compression members subject to flexural-torsional buckling although considerable behavioural differences exist between cold-formed and hot-rolled steel members. Past research has recommended the use of ambient temperature cold-formed steel design rules for the fire design of cold-formed steel compression members provided appropriately reduced mechanical properties are used at elevated temperatures. To assess the accuracy of flexural-torsional buckling design rules in both ambient temperature cold-formed steel design and fire design standards, an experimental study of slender cold-formed steel compression members was undertaken at both ambient and elevated temperatures. This paper presents the details of this experimental study, its results, and their comparison with the predictions from the current design rules. It was found that the current ambient temperature design rules are conservative while the fire design rules are overly conservative. Suitable recommendations have been made in relation to the currently available design rules for flexural-torsional buckling including methods of improvement. Most importantly, this paper has addressed the lack of experimental results for slender cold-formed steel columns at elevated temperatures.

A Study on the Weight Adjustment Method for Household Panel Survey (가구 패널조사에서의 가중치 조정에 관한 연구)

  • NamKung, Pyong;Byun, Jong-Seok;Lim, Chan-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1315-1329
    • /
    • 2009
  • The panel survey is need to have a more concern about a response due to a secession and non-response of a sample. And generally a population is not fixed and continuously changed. Thus, the rotation sample design can be used by the method replacing the panel research. This paper is the study of comparison to equal weight method, Duncan weight, Design weight method, weight share method in rotation sample design. More specifically, this paper compared variance estimators about the existing each method for the efficiency comparison, and to compare the precision using the relative efficiency gain by the Coefficient Variance(CV) after getting the design weight from the actual data.

Comparison and Torque Analysis for Magnetic Gear with Parallel/Halbach Magnetized PMs according to Design Parameters (평행방향/할박 자화 영구자석을 갖는 마그네틱 기어의 설계변수에 따른 토크특성 해석 및 비교)

  • Hong, Sang-A;Choi, Jang-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.152-159
    • /
    • 2014
  • Magnetic gear can transmit torque without any mechanical contact among rotational parts in rotating mechanical systems. Especially, magnetic gear using rare-earth PMs can be used in variety of industry application because of their great power efficiency. Thus, recent trend shows that magnetic gear can be replaced with common mechanical gear. This paper deals with comparison and torque analysis for magnetic gears with parallel and Halbach magnetization according to various design parameters. Using a two dimensional (2D) finite element (FE) analysis, suitable gear ratio is selected. We performed analysis for magnetically connected inner and outer torque with respect to various design parameters including thickness of inner and outer PM, steel pole angle, segments of Halbach array and magnetization pattern of inner and outer PMs. Finally, we can obtain improved design model having parallel and Halbach magnetization with larger torque, compared with an initial design model.

A Study on factors that make busy of Street space - Focused on a Comparison between the Pedestrian Mall of Korea and Japan - (가로공간의 번화함을 만드는 요소에 관한 연구 - 한국과 일본의 번화가 보행공간의 비교분석을 중심으로 -)

  • 이재원
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.143-152
    • /
    • 2004
  • The study compares busy streets with the ones that are not and finds out what makes people think the street is busy. Based on this comparison and analysis, the study reflects on measures to make streets busy. First of all, busy streets are classified into three parts: shopping zone, business zone, and the combination of the two. The study analyzes whether the street is busy due to the certain system or structure of the street or it is busy due to certain design of the street, and the analysis is done in those three categories mentioned above. The research was carried out in busy streets with similar characteristics in both Korea and Japan. Physical factors that turn ordinary streets into busy ones are focused and analyzed. The visual perception is analyzed. As a result, similarity and difference between designs of physical factors of streets in both countries are discovered. Ideal arrangement and design of physical factors that contribute to the making of busy streets are also found. Based on these data, design that makes busy streets with different characteristics is presented here.

  • PDF

A computer based simulation model for the fatigue damage assessment of deep water marine riser

  • Pallana, Chirag A.;Sharma, Rajiv
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-142
    • /
    • 2022
  • An analysis for the computation of Fatigue Damage Index (FDI) under the effects of the various combination of the ocean loads like random waves, current, platform motion and VIV (Vortex Induced Vibration) for a certain design water depth is a critically important part of the analysis and design of the marine riser platform integrated system. Herein, a 'Computer Simulation Model (CSM)' is developed to combine the advantages of the frequency domain and time domain. A case study considering a steel catenary riser operating in 1000 m water depth has been conducted with semi-submersible. The riser is subjected to extreme environmental conditions and static and dynamic response analyses are performed and the Response Amplitude Operators (RAOs) of the offshore platform are computed with the frequency domain solution. Later the frequency domain results are integrated with time domain analysis system for the dynamic analysis in time domain. After that an extensive post processing is done to compute the FDI of the marine riser. In the present paper importance is given to the nature of the current profile and the VIV. At the end we have reported the detail results of the FDI comparison with VIV and without VIV under the linear current velocity and the FDI comparison with linear and power law current velocity with and without VIV. We have also reported the design recommendations for the marine riser in the regions where the higher fatigue damage is observed and the proposed CSM is implemented in industrially used standard soft solution systems (i.e., OrcaFlex*TM and Ansys AQWA**TM), Ms-Excel***TM, and C++ programming language using its object oriented features.

Can irregular bridges designed as per the Indian standards achieve seismic regularity?

  • Thomas, Abey E.;Somasundaran, T.P.;Sajith, A.S.
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • One of the major developments in seismic design over the past few decades is the increased emphasis for limit states design now generally termed as Performance Based Engineering. Performance Based Seismic Design (PBSD) uses Displacement Based Design (DBD) methodology wherein structures are designed for a target level of displacement rather than Force Based Design (FBD) methodology where force or strength aspect is being used. Indian codes still follow FBD methodology compared to other modern codes like CalTrans, which follow DBD methodology. Hence in the present study, a detailed review of the two most common design methodologies i.e., FBD and DBD is presented. A critical evaluation of both these methodologies by comparing the seismic performance of bridge models designed using them highlight the importance of adopting DBD techniques in Indian Standards also. The inherent discrepancy associated with FBD in achieving 'seismic regularity' is highlighted by assessing the seismic performance of bridges with varied relative height ratios. The study also encompasses a brief comparison of the seismic design and detailing provisions of IRC 112 (2011), IRC 21 (2000), AASHTO LRFD (2012) and CalTrans (2013) to evaluate the discrepancies on the same in the Indian Standards. Based on the seismic performance evaluation and literature review a need for increasing the minimum longitudinal reinforcement percentage stipulated by IRC 112 (2011) for bridge columns is found necessary.

Comparison of the Building Envelope Design Elements between Green Building Design Guidelines and Green Building Certification Criteria - Focus on public institution relocation projects - (녹색건축물 디자인가이드라인과 녹색건축 인증 비교를 통한 외피계획요소에 관한 연구 - 공공기관 지방이전 건축물을 중심으로 -)

  • Kim, So-Young;Hwang, Sung-Pil;Oh, Joon-Gul
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.61-68
    • /
    • 2014
  • Due to rapid climate changing and the need for energy conservation, environment friendly initiatives have emerged, and regulations to support establishment of green structures in construction have been legislated and enacted. In this study, the supporting of green build method act for rapid climate change and energy conservation. Using green build method, protecting surrounding ecosystem and developing green building continuously, I suggest alternative for protection of the environment. Identifies Envelope Design Elements among various construction Green Building Design Guidelines. Green buildings that we extract the Green Building envelope design from Design Guideline, select the object building through the green buildings examples of public institution relocation projects. Since then analyzes the planned schematic design and Green Envelope Design Elements and Green Building Certification(G-SEED). So, that future directions for planning correlation of Green Building and Design Guidelines about Green Design Elements Can be presented.

A Study of Optimal Design for Mg Armrest Frame by using Response Surface Method (반응표면법을 이용한 마그네슘 암레스트 프레임의 최적설계 연구)

  • Kim, Eun-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.797-804
    • /
    • 2012
  • Magnesium has a long tradition of use as a lightweight material in the field of automotive industry. This paper presents the design optimization process of Mg armrest frame to minimize its weight by replacing the steel frame. formerly, the analysis of steel armrest frame was peformed to determine the design specifications for Mg armrest frame. The initial design of Mg armrest frame was carried out by topological optimization technique. After six types of design variables and four types of response variables were defined, DOE(Design of Experiment) and RSM (Response Surface Method) were applied in order to measure sensitivity of design variables and realize optimization through regression model. After design optimization, the weight of the optimized Mg armrest frame was reduced by about 3% compared to the initial design of the Mg frame and was decreased by 41.7% in comparison with that of the steel frame. Some prototypical armrest frames were also made by die casting process and tested. The results were satisfying for its design specifications.

Fuzzy-Weighted Evaluation Method of Product Design (제품디자인의 퍼지가중평가방법 개발)

  • 정광태;박재희;김명석
    • Archives of design research
    • /
    • v.13 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • The evaluation of design is one of the most important steps in design process. However, because in most cases, design evaluation has been disregarded in comparison with other steps and has been performed by designer's subjective judgment. there are few studies for the development of systematic methodology. In this study, we developed the method of design evaluation using the fuzzy theory and the multi-criteria dedsion making model. This method consists of two steps. The first step is to obtain relative importance weights of design evaluation criteria, and the second step is to obtain and integrate scores for design evaluation criteria. AHP(analytic hierarchy process) and fuzzy theory were applied to the first and the second step, respectively. We applied the developed method to the sensible evaluation of cellular phone design. As the result, we verified that the developed method could be effectively used in the evaluation of product design.

  • PDF

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.