• Title/Summary/Keyword: design business

Search Result 7,387, Processing Time 0.03 seconds

Differential Effects of Recovery Efforts on Products Attitudes (제품태도에 대한 회복노력의 차별적 효과)

  • Kim, Cheon-GIl;Choi, Jung-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.33-58
    • /
    • 2008
  • Previous research has presupposed that the evaluation of consumer who received any recovery after experiencing product failure should be better than the evaluation of consumer who did not receive any recovery. The major purposes of this article are to examine impacts of product defect failures rather than service failures, and to explore effects of recovery on postrecovery product attitudes. First, this article deals with the occurrence of severe and unsevere failure and corresponding service recovery toward tangible products rather than intangible services. Contrary to intangible services, purchase and usage are separable for tangible products. This difference makes it clear that executing an recovery strategy toward tangible products is not plausible right after consumers find out product failures. The consumers may think about backgrounds and causes for the unpleasant events during the time gap between product failure and recovery. The deliberation may dilutes positive effects of recovery efforts. The recovery strategies which are provided to consumers experiencing product failures can be classified into three types. A recovery strategy can be implemented to provide consumers with a new product replacing the old defective product, a complimentary product for free, a discount at the time of the failure incident, or a coupon that can be used on the next visit. This strategy is defined as "a rewarding effort." Meanwhile a product failure may arise in exchange for its benefit. Then the product provider can suggest a detail explanation that the defect is hard to escape since it relates highly to the specific advantage to the product. The strategy may be called as "a strengthening effort." Another possible strategy is to recover negative attitude toward own brand by giving prominence to the disadvantages of a competing brand rather than the advantages of its own brand. The strategy is reflected as "a weakening effort." This paper emphasizes that, in order to confirm its effectiveness, a recovery strategy should be compared to being nothing done in response to the product failure. So the three types of recovery efforts is discussed in comparison to the situation involving no recovery effort. The strengthening strategy is to claim high relatedness of the product failure with another advantage, and expects the two-sidedness to ease consumers' complaints. The weakening strategy is to emphasize non-aversiveness of product failure, even if consumers choose another competitive brand. The two strategies can be effective in restoring to the original state, by providing plausible motives to accept the condition of product failure or by informing consumers of non-responsibility in the failure case. However the two may be less effective strategies than the rewarding strategy, since it tries to take care of the rehabilitation needs of consumers. Especially, the relative effect between the strengthening effort and the weakening effort may differ in terms of the severity of the product failure. A consumer who realizes a highly severe failure is likely to attach importance to the property which caused the failure. This implies that the strengthening effort would be less effective under the condition of high product severity. Meanwhile, the failing property is not diagnostic information in the condition of low failure severity. Consumers would not pay attention to non-diagnostic information, and with which they are not likely to change their attitudes. This implies that the strengthening effort would be more effective under the condition of low product severity. A 2 (product failure severity: high or low) X 4 (recovery strategies: rewarding, strengthening, weakening, or doing nothing) between-subjects design was employed. The particular levels of product failure severity and the types of recovery strategies were determined after a series of expert interviews. The dependent variable was product attitude after the recovery effort was provided. Subjects were 284 consumers who had an experience of cosmetics. Subjects were first given a product failure scenario and were asked to rate the comprehensibility of the failure scenario, the probability of raising complaints against the failure, and the subjective severity of the failure. After a recovery scenario was presented, its comprehensibility and overall evaluation were measured. The subjects assigned to the condition of no recovery effort were exposed to a short news article on the cosmetic industry. Next, subjects answered filler questions: 42 items of the need for cognitive closure and 16 items of need-to-evaluate. In the succeeding page a subject's product attitude was measured on an five-item, six-point scale, and a subject's repurchase intention on an three-item, six-point scale. After demographic variables of age and sex were asked, ten items of the subject's objective knowledge was checked. The results showed that the subjects formed more favorable evaluations after receiving rewarding efforts than after receiving either strengthening or weakening efforts. This is consistent with Hoffman, Kelley, and Rotalsky (1995) in that a tangible service recovery could be more effective that intangible efforts. Strengthening and weakening efforts also were effective compared to no recovery effort. So we found that generally any recovery increased products attitudes. The results hint us that a recovery strategy such as strengthening or weakening efforts, although it does not contain a specific reward, may have an effect on consumers experiencing severe unsatisfaction and strong complaint. Meanwhile, strengthening and weakening efforts were not expected to increase product attitudes under the condition of low severity of product failure. We can conclude that only a physical recovery effort may be recognized favorably as a firm's willingness to recover its fault by consumers experiencing low involvements. Results of the present experiment are explained in terms of the attribution theory. This article has a limitation that it utilized fictitious scenarios. Future research deserves to test a realistic effect of recovery for actual consumers. Recovery involves a direct, firsthand experience of ex-users. Recovery does not apply to non-users. The experience of receiving recovery efforts can be relatively more salient and accessible for the ex-users than for non-users. A recovery effort might be more likely to improve product attitude for the ex-users than for non-users. Also the present experiment did not include consumers who did not have an experience of the products and who did not perceive the occurrence of product failure. For the non-users and the ignorant consumers, the recovery efforts might lead to decreased product attitude and purchase intention. This is because the recovery trials may give an opportunity for them to notice the product failure.

  • PDF

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

The Process of Establishing a Japanese-style Garden and Embodying Identity in Modern Japan (일본 근대 시기 일본풍 정원의 확립과정과 정체성 구현)

  • An, Joon-Young;Jun, Da-Seul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.59-66
    • /
    • 2023
  • This study attempts to examine the process of establishing a Japanese-style garden in the modern period through the perspectives of garden designers, spatial composition, spatial components, and materials used in their works, and to use it as data for embodying the identity of Korean garden. The results are as follows: First, by incorporating elements associated with Koreanness into the modern garden culture, there are differences in location, presence, and subjectivity when compared to Japan. This reflects Japan's relatively seamless cultural continuity compared to Korea's cultural disconnection during the modern period. Second, prior to the modern period, Japan's garden culture spread and continued to develop throughout the country without significant interruptions. However, during the modern period, the Meiji government promoted the policy of 'civilization and enlightenment (Bunmei-kaika, 文明開化)' and introduced advanced European and American civilizations, leading to the popularity of Western-style architectural techniques. Unfortunately, the rapid introduction of Western culture caused the traditional Japanese culture to be overshadowed. In 1879, British architect Josiah Condor guided Japanese architects and introduced atelier and traditional designs of Japanese gardens into the design. The garden style of Ogawa Jihei VII, a garden designer in Kyoto during the Meiji and Taisho periods, was accepted by influential political and business leaders who sought to preserve Japan's traditional culture. And a protection system of garden was established through the preparation of various laws and regulations. Third, as a comprehensive analysis of Japanese modern gardens, the examination of garden designers, Japanese components, materials, elements, and the Japanese-style showed that Yamagata Aritomo, Ogawa Jihei VII, and Mirei Shigemori were representative garden designers who preserved the Japanese-style in their gardens. They introduced features such as the creation of a Daejicheon(大池泉) garden, which involves a large pond on a spacious land, as well as the naturalistic borrowed scenery method and water flow. Key components of Japanese-style gardens include the use of turf, winding garden paths, and the variation of plant species. Fourth, an analysis of the Japanese-style elements in the target sites revealed that the use of flowing water had the highest occurrence at 47.06% among the individual elements of spatial composition. Daejicheon and naturalistic borrowed scenery were also shown. The use of turf and winding paths were at 65.88% and 78.82%, respectively. The alteration of tree species was relatively less common at 28.24% compared to the application of turf or winding paths. Fifth, it is essential to discover more gardens from the modern period and meticulously document the creators or owners of the gardens, the spatial composition, spatial components, and materials used. This information will be invaluable in uncovering the identity of our own gardens. This study was conducted based on the analysis of the process of establishing the Japanese-style during Japan's modern period, utilizing examples of garden designers and gardens. While this study has limitations, such as the absence of in-depth research and more case studies or specific techniques, it sets the stage for future exploration.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF

Consumer Responses to Retailer's Location-based Mobile Shopping Service : Focusing on PAD Emotional State Model and Information Relevance (유통업체의 위치기반 모바일 쇼핑서비스 제공에 대한 소비자 반응 : PAD 감정모델과 정보의 상황관련성을 중심으로)

  • Lee, Hyun-Hwa;Moon, Hee-Kang
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.63-92
    • /
    • 2012
  • This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model in the present study as a conceptual framework. The results of an online survey of 335 mobile phone users in the U.S. indicated the positive effects of arousal and information relevancy on pleasure. In addition, there was a significant relationship between pleasure and intention to use a LBMSS. However, the relationship between dominance and pleasure was not statistically significant. The results of the present study provides insight to retailers and marketers as to what factors they need to consider to implement location-based mobile shopping services to improve their business performance. Extended Abstract : Location aware technology has expanded the marketer's reach by reducing space and time between a consumer's receipt of advertising and purchase, offering real-time information and coupons to consumers in purchasing situations (Dickenger and Kleijnen, 2008; Malhotra and Malhotra, 2009). LBMSS increases the relevancy of SMS marketing by linking advertisements to a user's location (Bamba and Barnes, 2007; Malhotra and Malhotra, 2009). This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective response. The purpose of the study was to examine the relationship among information relevancy and affective variables and their effects on intention to use LBMSS. Thus, information relevancy was integrated into pleasure-arousal-dominance (PAD) model and generated the following hypotheses. Hypothesis 1. There will be a positive influence of arousal concerning LBMSS on pleasure in regard to LBMSS. Hypothesis 2. There will be a positive influence of dominance in LBMSS on pleasure in regard to LBMSS. Hypothesis 3. There will be a positive influence of information relevancy on pleasure in regard to LBMSS. Hypothesis 4. There will be a positive influence of pleasure about LBMSS on intention to use LBMSS. E-mail invitations were sent out to a randomly selected sample of three thousand consumers who are older than 18 years old and mobile phone owners, acquired from an independent marketing research company. An online survey technique was employed utilizing Dillman's (2000) online survey method and follow-ups. A total of 335 valid responses were used for the data analysis in the present study. Before the respondents answer any of the questions, they were told to read a document describing LBMSS. The document included definitions and examples of LBMSS provided by various service providers. After that, they were exposed to a scenario describing the participant as taking a saturday shopping trip to a mall and then receiving a short message from the mall. The short message included new product information and coupons for same day use at participating stores. They then completed a questionnaire containing various questions. To assess arousal, dominance, and pleasure, we adapted and modified scales used in the previous studies in the context of location-based mobile shopping service, each of the five items from Mehrabian and Russell (1974). A total of 15 items were measured on a seven-point bipolar scale. To measure information relevancy, four items were borrowed from Mason et al. (1995). Intention to use LBMSS was captured using two items developed by Blackwell, and Miniard (1995) and one items developed by the authors. Data analyses were conducted using SPSS 19.0 and LISREL 8.72. A total of usable 335 data were obtained after deleting the incomplete responses, which results in a response rate of 11.20%. A little over half of the respondents were male (53.9%) and approximately 60% of respondents were married (57.4%). The mean age of the sample was 29.44 years with a range from 19 to 60 years. In terms of the ethnicity there were European Americans (54.5%), Hispanic American (5.3%), African-American (3.6%), and Asian American (2.9%), respectively. The respondents were highly educated; close to 62.5% of participants in the study reported holding a college degree or its equivalent and 14.5% of the participants had graduate degree. The sample represents all income categories: less than $24,999 (10.8%), $25,000-$49,999 (28.34%), $50,000-$74,999 (13.8%), and $75,000 or more (10.23%). The respondents of the study indicated that they were employed in many occupations. Responses came from all 42 states in the U.S. To identify the dimensions of research constructs, Exploratory Factor Analysis (EFA) using a varimax rotation was conducted. As indicated in table 1, these dimensions: arousal, dominance, relevancy, pleasure, and intention to use, suggested by the EFA, explained 82.29% of the total variance with factor loadings ranged from .74 to .89. As a next step, CFA was conducted to validate the dimensions that were identified from the exploratory factor analysis and to further refine the scale. Table 1 exhibits the results of measurement model analysis and revealed a chi-square of 202.13 with degree-of-freedom of 89 (p =.002), GFI of .93, AGFI = .89, CFI of .99, NFI of .98, which indicates of the evidence of a good model fit to the data (Bagozzi and Yi, 1998; Hair et al., 1998). As table 1 shows, reliability was estimated with Cronbach's alpha and composite reliability (CR) for all multi-item scales. All the values met evidence of satisfactory reliability in multi-item measure for alpha (>.91) and CR (>.80). In addition, we tested the convergent validity of the measure using average variance extracted (AVE) by following recommendations from Fornell and Larcker (1981). The AVE values for the model constructs ranged from .74 through .85, which are higher than the threshold suggested by Fornell and Larcker (1981). To examine discriminant validity of the measure, we again followed the recommendations from Fornell and Larcker (1981). The shared variances between constructs were smaller than the AVE of the research constructs and confirm discriminant validity of the measure. The causal model testing was conducted using LISREL 8.72 with a maximum-likelihood estimation method. Table 2 shows the results of the hypotheses testing. The results for the conceptual model revealed good overall fit for the proposed model. Chi-square was 342.00 (df = 92, p =.000), NFI was .97, NNFI was .97, GFI was .89, AGFI was .83, and RMSEA was .08. All paths in the proposed model received significant statistical support except H2. The paths from arousal to pleasure (H1: ${\ss}$=.70; t = 11.44), from information relevancy to intention to use (H3 ${\ss}$ =.12; t = 2.36), from information relevancy to pleasure (H4 ${\ss}$ =.15; t = 2.86), and pleasure to intention to use (H5: ${\ss}$=.54; t = 9.05) were significant. However, the path from dominance to pleasure was not supported. This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model as a conceptual framework. The results of the present study support previous studies indicating that emotional responses as well as cognitive responses have a strong impact on accepting new technology. The findings of this study suggest potential marketing strategies to mobile service developers and retailers who are considering the implementation of LBMSS. It would be rewarding to develop location-based mobile services that integrate information relevancy and which cause positive emotional responses.

  • PDF