• 제목/요약/키워드: desalination

검색결과 479건 처리시간 0.022초

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

1단 증발식 해수담수화 시스템의 계절별 성능 평가 (Evaluation of seasonal performance for single-stage desalination system with solar energy)

  • 곽희열;주홍진;주문창;김정배
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.221-226
    • /
    • 2008
  • This study was carry out evaluation of seasonal performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a spring season day average $392W/m^2$, the daily fresh water showed to produce about 340liter. In a summer season day average $296W/m^2$, the daily fresh water showed to produce about 328liter. In a autumn season day average $349W/m^2$, the daily fresh water showed to produce about 277liter. In a winter season day average $342W/m^2$, the daily fresh water showed to produce about 271liter.

  • PDF

전기투석 막여과의 이온제거 특성 및 지하염수의 담수화효율 (Selectivity of cations in electrodialysis and its desalination efficiency on brackish water)

  • 최수영;권지향
    • 상하수도학회지
    • /
    • 제27권4호
    • /
    • pp.445-456
    • /
    • 2013
  • In this study, desalination by electrodialysis with ion exchange membranes was applied to synthetic waters with various ion concentrations and also for ground waters from coastal areas in Korea. Electrodialysis performance on the synthetic solutions showed the similar tendency in operation time and current curves, i.e., shorter operation time and higher maximum current with increasing applied voltages. The ED results of synthetic waters with different ion compositions, i.e., $Na_2SO_4$, $MgSO_4$, $CaSO_4$, at the similar conductivity condition, i.e., $1,250{\mu}s/cm$ revealed that effects of mono- and divalent ions on water quality and performance in electrodialysis were different. The divalent ions had less efficiency in the ED compared to monovalent sodium ions and also divalent calcium ions showed better performance than Mg ions. The electrodialysis on the ground waters produced high quality of drinking water. The groundwater from SungRoe however showed a buildup of membrane resistance. Organic matter concentrations and great portions of divalent ions in the groundwater were possible causes of the deteriorated performance.

증발식 해수담수화설비의 에너지 소모량에 관한 연구 (A study on the required energy of a thermal type desalination plant)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1094-1100
    • /
    • 2014
  • 오폐수처리, 해수담수화 및 식품산업의 경우 증발과정은 필수공정이며, 이는 기본적으로 용액으로부터 용매인 순수한 물성분을 추출하여 점차 용액의 농도를 증가시키는 방식이다. 농축을 위한 방식은 전기투석, 증발식, 막방식 등의 다양한 방법이 사용되고 있으나, 본 연구에서는 여러 산업분야에서 적용되고 있는 증발식을 대상으로 운전방식에 따른 가열열원의 소모량을 이론적으로 분석하고, 이에 근거하여 다단증발식 해수담수화설비의 운전특성을 파악하였다. 본 연구의 결과에 따르면 시스템에서 이용할 수 있는 전체 온도차, 즉 인입해수의 온도와 1단 증발부로 유입되는 해수온도와의 차를 기준으로 증발단의 수를 증가시킬수록 에너지효율이 상승함을 알 수 있었다.

해수담수화 막 증류 공정에서 유입수 전처리 적용에 따른 막 오염 평가 (Prevention of membrane fouling by roughing filter for the stand-alone MD process)

  • 윤택근;정성필;김혜원;홍승관;이석헌
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.301-307
    • /
    • 2018
  • Membrane distillation (MD) is a thermally driven desalination process with a hydrophobic membrane. MD process has been known to have a lower fouling potential compared to other pressure-based membrane desalination process (NF, RO). However, membrane fouling also occurs in MD process. In this study, the membrane fouling was observed in MD process according to the pre-treatment processes. The filtration and precipitation processes were applied as the pre-treatment to prevent the membrane fouling. The pore sizes of roughing filters were 0.4, 5, 10, 30, and $60{\mu}m$. The concentration of the coagulant was 1.2 mg/L as $FeCl_3$. The membrane fouling on MD membrane was successfully removed with both pre-treatment processes.

태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가 (Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination)

  • 주홍진;곽희열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF

태양에너지 해수담수화시스템 실증 (Demonstration study on Desalination System using Solar energy)

  • 김정배;주홍진;윤응상;주문창;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.27-33
    • /
    • 2007
  • In this research, to develop the practical application system of fresh water generation system with plate-type fresh water generator using low pressure evaporation method is the main object, and to do that, this study used the evacuated solar collector with operating range of about $50-85^{\circ}C$ as thermal energy source and solar photovoltaic as electric energy source. To achieve that object, this study set up the demo-plant, then estimated and analyzed the usefulness, the safety, and the reliability through pre-tests during short time ahead of the long-time operation. This study showed that the pumps, which are including sea water supply, ejector, hot water supply, and fresh water pumps, were operated one after another. And, the fresh water yield was closely related with the solar irradiance and lower supply temperature of hot water was revealed more reasonable for the solar energy desalination system. That is due to the insufficient area than the solar collector area being required that was estimated through the performance tests of the fresh water generator.

해수 담수화 플랜트 제어 시스템 구성 방안 연구 (A Study on Automatic Control Systems for Seawater Desalination Plants)

  • 주영덕;김경범;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.3-9
    • /
    • 2008
  • Recently, the plant industries are being activated and plant control systems use various technologies. Because the optimized design for the plants is very important for the reducing of operation and maintenance costs, automatic control systems become more important. Plant control systems consist of the master controller, the plant networks, the programming environment for engineering, monitoring software and the field devices. The control systems should have reliability, availability and safety. Modular architecture of hardware and software makes flexible configuration of the control systems. Each component should have diagnostic functions. It follows industrial standards and makes open systems. Open systems increase accessibility against the data which is distributed in the plants. The controllers including processor and communication modules use the up-to-date technology. They have real time and fault tolerant function by duplicating processors or networks. It also enables to make the distributed control systems. The distributed architecture makes more scalable main control system. Automatic control systems can be operated with better performance. In this paper, we analyzed the requirements of the seawater desalination plants and made some consideration facts for developing the optimized controller. Also we described the design concept of the main controller, which consists of several modules. We should validate and complement the design for the reliability and better performance.

  • PDF

Hybrid salts precipitation-nanofiltration pretreatment of MSF and RO seawater desalination feed

  • Al-Rawajfeh, Aiman Eid
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.253-266
    • /
    • 2012
  • In this work, the effect of hybrid salts precipitation-nanofiltration (SP-NF) process on the scale deposits in thermal and membrane desalination processes has been studied. The analysis was carried out to study the scale formation from the Arabian Gulf seawater in MSF and RO reference processes by changing the percentage of pretreatment from 0 to 100%. Four different SP-NF configurations were suggested. A targeted Top Brine Temperature (TBT) of $130^{\circ}C$ may be achieved if 30% portion is pretreated by SP and/or NF processes. As a rule of thumb, each 1% pretreatment portion increases the reference TBT of $115^{\circ}C$ by $0.6^{\circ}C$. For both MSF and RO, parallel pretreatment of certain percentage of the feed by SP and the rest by NF, showed the lowest scale values. The case showed the best values for sulfate scale prevention and the highest values of increasing the monovalent ions relative to the divalent scale forming ions. Sulfate scale is significant in MSF process while carbonate scale is significant in RO. Salt precipitation was suggested because it is less costly than nanofiltration, but nanofiltration was used here because it is efficient in sulfate ions removal.

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.