• Title/Summary/Keyword: depth test

Search Result 3,422, Processing Time 0.028 seconds

Predicting Factors for the Distance from Skin to the Epidural Space with the Paramedian Epidural Approach (방정중접근법에 의한 경막외 천자시 피부로부터 경막외강까지의 거리의 예측인자)

  • Shim, Jae-Chol;Lee, Myoung-Eui;Kim, Dong-Won
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.349-353
    • /
    • 1996
  • Background: Although the paramedian approach for epidural blockade is useful in some clinical situation, the parameters which are correlated with the distance from skin to the epidural space has not been established. Methods: We studied in 143 patients having elective continuous epidural blocks for relief of postoperative pain. All blocks were performed using paramedian approach with Tuohy needle in the lumbar (group 1, n=100) and thoracic (group 2, n=45) area. We measured the distance from skin to the epidural space, body weight, height, and the angle between the shaft of the needle and the skin. Data were analyzed by linear regression. The relationships between parameters identified by the F-test with a P value of less than 0.05 were considered statistically significant. Results: The mean distance from skin to the lumbar epidural space was $4.4{\pm}0.7$ cm. significant correlation between the body weight and the depth of lumbar epidural space ($\gamma$ value : 0.492) was noted with regression equation of depth(cm)=2.293+0.034${\times}$body weight (kg). Also the significant correlation between the ponderal index (PI) and the depth of lumbar epidural space ($\gamma$ value : 0.539) was noted with regression equation of depth(cm)=1.703+0.07${\times}$PI, The mean distance from skin to the thoracic epidural space was $5.2{\pm}0.7cm$ which did not correlated with other anatomic measurements. Conclusion: We found that PI and body weight are the suitable predictors of the depth of the lumbar epidural space, but not the thoracic epidural space.

  • PDF

Utilization of Mean Shear Wave Velocity to a Depth Shallower than 30m for Efficient Seismic Site Classification in Korea (우리나라 지진공학적 지반 분류를 위한 30m 미만 심도 평균 전단파 속도의 활용)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.562-571
    • /
    • 2006
  • Mean shear wave velocity of the upper 30m $(V_s30)$ used as the current site classification criterion for determining seismic design ground motions in Korea was established based on the typical depth of site investigations in western US, in which the depth to bedrock is much deeper than that in Korea. In this study, to establish appropriate site classification system for site conditions of Korea, site investigations including in-situ seismic tests to determine shear wave velocity $(V_s)$ were carried out at total 72 sites in Korean peninsula. The mean $V_s's$ to the depths of 5m, 10m, 15m, 20m and 25m together with the $V_s30$ at the testing sites were determined, and the correlation between the mean $V_s$ to a depth shallower than 30m and the $V_s30$ was drawn and suggested for the efficient seismic site classification in Korea. The proposed correlation could be utilized for the seismic design in case of the $V_s$ profiles shallower than 30 m in depth. The correlation in this study, nevertheless, requires further modification by means of the accumulation of various site data in Korea.

  • PDF

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Characteristics of Scour around Pipeline in Current (흐름에 의한 관로의 세굴특성)

  • Kim, Sungduk;Ahn, Kwangkuk;Lee, Hojin;Lee, Seongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.117-123
    • /
    • 2009
  • This study is to investigate the characteristics of scour around pipeline in current and hydraulic model tests were performed. All the model test are 45 cases, which were conducted with velocities of 0.2 m/s to 0.5 m/s and pipe diameters of 45, 60, 90 mm. The developments of scour around pipeline were observed and equilibrium scour depths were recorded due to variation of pipe diameter and current velocity. According to the results, the equilibrium scour depth was proportional to current velocity and pipe diameter. The effect of diameter of pipeline on the equilibrium scour depth was bigger than current velocity. The correlations of relative scour depth and dimensionless number such as a Reynolds number, Shields number, and Froude number were analyzed. The Froude number and the relative scour depth had a high correlation of 0.900.

  • PDF

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment (염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

A Study on the Optimal Cutting Depth upon Surface Roughness of Al Alloy 7075 in High-speed Machining (알루미늄 합금 7075의 표면 거칠기에 미치는 고속가공의 최적 절삭 깊이에 관한 연구)

  • Bae, Myung-Whan;Park, Hyeong-Yeol;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.74-81
    • /
    • 2013
  • The high-speed machining in the manufacturing industry field has been widely applied for parts of vehicles, aircraft, ships, electronics, etc., recently, because the effect of cost savings for shortening processing time and improving productivity is great. The purpose in this study is to investigate the effect of cutting depth on the surface roughness of workpiece with the spindle rotational speed and feed rate of high-speed machines as a parameter to find the optimal depth in the finishing for ball end mill of the aluminum alloy 7075 which is used much in aircraft parts. When the cutting depth for the respective feed rate and spindle rotational speed is varied from 0.1 mm to 0.7 mm at intervals of 0.2 mm in the wet finishing of the aluminum alloy 7075 by the insoluble cutting oils and high-speed machining used in the rough machining of previous study, the surface roughness values and the cutting temperature are measured. In addition, the cutting surface shapes of test specimens are observed by optical microscope and compared with respectively. It is found that the surface roughness values and the temperature generated during machining are increased as the feed rate and cutting depth are raised, but those are decreased as the spindle rotational speed is increased.

The comparison of clinical changes during maintenance phase after non-surgical or surgical therapy of chronic periodontitis (만성 치주염에서 비외과적 또는 외과적 치주치료 후 유지관리기 동안 임상적 변화의 비교)

  • Kim, Jee-Hyun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.69-84
    • /
    • 2006
  • Reports on the comparison of clinical effect between non-surgical and surgical therapy, and the change of the clinical parameters during maintenance phase have been rarely presented in Korea. This study was to observe the clinical changes during maintenance phase of 6 months in patients with chronic periodontitis treated by non-surgical or surgical therapy in Department of Periodontics, Chonnam National University Hospital. Among the systemically healthy and non-smoking patients with moderate to severe chronic periodontitis, twenty eight patients (mean age: 47.5 years) treated by non-surgical therapy (scaling and root planning) and nineteen patients (mean age: 47.3 years) treated by surgical therapy (flap surgery) were included in this study. The periodontal supportive therapy including recall check and oral hygiene reinforcement was started as maintenance phase since 1 month of healing after treatment. Probing depth, gingival recession. clinical attachment level and tooth mobility were recorded at initial, baseline and 1, 2, 3 and 6 month of maintenance phase. The clinical parameters were compared between the non-surgical and surgical therapies using Student t-test and repeated measure ANOVA by initial probing depth and surfaces. Surgical therapy resulted in greater change in clinical parameters than non-surgical therapy. During the maintenance phase of 6 months, the clinical effects after treatment had been changed in different pattern according to initial probing depth and tooth surface. During maintenance phase, probing depth increased more and gingival recession increased less after surgical therapy, compared to non-surgical therapy. The sites of initial probing depth less than 3 mm lost more clinical attachment level, and the sites of initial probing depth more than 7 mm gained clinical attachment level during maintenance phase after non-surgical therapy, compared to surgical therapy. Non-surgical therapy resulted in greater reduction of tooth mobility than surgical therapy during maintenance phase. These results indicate that the clinical effects of non-surgical or surgical therapy may be different and may change during the maintenance phase.

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Analysis of Carbonation for Harbor Concrete Structure (항만 콘크리트 구조물에 대한 탄산화 해석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.575-582
    • /
    • 2008
  • Carbonation is one of major factors influencing on the durability of concrete structure. This paper investigates the effect of carbonation on the soundness of harbor concrete structure and quantifies the influence of carbonation based on in-situation data tested at 369 points in 69 harbor facilities. The relationships between carbonation depth and cover depth, and between carbonation depth and compressive strength are studied and the failure probability of durability, that is the initiation probability of steel corrosion, is evaluated on the basis of reliability concept. The in-situation test results showed that the ratio of carbonation depth to cover depth was less than 0.2, and the carbonation depth increased with age. In most cases, the failure probability of durability by carbonation was less than 10%. Therefore, it can be concluded that the influence of carbonation on the durability of harbor concrete structure is smaller than other factors deteriorating the durability of harbor concrete structure.

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.