• 제목/요약/키워드: depth ratio

검색결과 2,591건 처리시간 0.023초

전단철근비와 보의 단면크기에 따른 철근콘크리트 보의 전단강도 특성 연구 (A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Shear Reinforcement Ratio and Beam Section Size)

  • 노형진;유인근;이호경;백승민;김우석;곽윤근
    • 대한건축학회논문집:구조계
    • /
    • 제35권6호
    • /
    • pp.111-119
    • /
    • 2019
  • The purpose of this study is to investigate the shear strength of reinforced concrete beam according to beam section size and shear reinforcement ratio. A total of nine specimens were tested and designed concrete compressive strength is 24 MPa. The main variables are shear reinforcement ratio and beam section size fixed with shear span to depth ratio (a/d = 2.5), the tensile reinforcement ratio (${\rho}=0.013$) and width to depth ratio (h/b = 1.5). The test specimens were divided into three series of S1 ($225{\times}338mm$), S2 ($270{\times}405mm$) and S3 ($315{\times}473mm$), respectively. The experimental results show that all specimens represent diagonal tensile failure. For $S^*-1$ specimens (d/s=0), the shear strength decreased by 33% and 46% with increasing the beam effective depth, 26% and 33% for $S^*-2$ specimens (d/s=1.5) and 16% and 20% for $S^*-3$ specimens (d/s=2.0) respectively. As the shear reinforcement ratio increases, the decrease range in shear strength decreases. In other words, this means that as the shear reinforcement ratio increases, the size effect of concrete decreases. In the S1 series, the shear strength increased by 39% and 41% as the shear reinforcement ratio increased, 54% and 76% in the S2 series and 66% and 100% in the S3 series, respectively. As the effective depth of beam increases, the increase range of shear strength increases. This means that the effect of shear reinforcement increases as the beam effective depth increases. As a result of comparing experimental values with theoretical values by standard equation and proposed equation, the ratio by Zsutty and Bazant's equation is 1.30 ~ 1.36 and the ratio by KBC1 and KBC2 is 1.55~.163, respectively. Therefore, Zsutty and Bazant's proposed equation is more likely to reflect the experimental data. The current standard for shear reinforcement ratio (i.e., $S_{max}=d/2$) is expected to be somewhat relaxed because the ratio of experimental values to theoretical values was found to be 1.01 ~ 1.44 for most specimens.

전단-스팬비가 작은 고강도철근콘크리트 보의 전단성능 (Shear Capacity of Higth-Strength Concrete Beams With a Shear Span-Depth Ratio Between 1.5 and 2.5)

  • 문정일;안종문;김대근;이광수;이승훈;오정근;장일영;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.106-110
    • /
    • 1992
  • This paper is an experimental study on shear capacity of the high strength R/C beams with a shear span-depth ratio between 1.5 and 2.5. a total of 15 beams was tested to determine diagonal cracking and ultimate shear strength. The major variables are shear span-depth ratio (a/d=1.5, 2.0. 2.5) , vertical shear reinforcements ratio(Vs = 0 , 25, 50, 75, 100% ( Vs = Pv/Pv(ACI)), and concrete compressive strength (f'c= 747㎏/㎠). Test results indicate that ACI 318-89 Eq(11-31) generally underestimates shear strength carried by vertical shear reinforcements, and the mode of failure may change from shear tension to shear compression for the beams having higher Vs than 75%, thus the effectiveness of r-fy on ultimate shear strength (vu) decreased.

  • PDF

단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안 (Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters)

  • 안상용;정상섬;김재영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

4MV X-선을 이용한 조직보상체 두께비 연구 및 응용 (A study on tissue compensator thickness ratio and an application for 4MV X-rays)

  • 김영범;정희영;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

Experimental Investigation of Chloride Ion Penetration and Reinforcement Corrosion in Reinforced Concrete Member

  • Al Mamun, Md. Abdullah;Islam, Md. Shafiqul
    • Journal of Construction Engineering and Project Management
    • /
    • 제7권1호
    • /
    • pp.26-29
    • /
    • 2017
  • This paper represents the experimental investigation of chloride penetration into plain concretes and reinforced concretes. The main objective of this work is to study the main influencing parameters affecting corrosion of steel in concrete. Plain cement concrete and reinforced cement concrete with different water-cement ratios and different cover depth were subjected to ponding test. Ponding of specimens were done for different periods into 10% NaCl solution. Depth of penetration of chloride solution into specimens was measured after ponding. Specimens were crushed and reinforcements were washed using $HNO_3$ solution and weight loss due to corrosion was calculated accordingly. There was a linear relationship between depth of penetration and water-cement ratio. It was also observed that, corrosion of reinforcing steel increases with chloride ponding period and with water-cement ratio. Corrosion of steel in concrete can be minimized by providing good quality concrete and sufficient concrete cover over the reinforcing bars. Water-cement ratio has to be low enough to slow down the penetration of chloride salts into concrete.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Flank 마모에 의한 SUS304의 절삭특성에 관한 연구 (A study on the cutting characteristics of SUS304 by flank wear)

  • 유기현;정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안 (Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data)

  • 김호일;김형중
    • 한국관개배수논문집
    • /
    • 제19권1호
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

초정밀 절삭에서의 가공깊이 최소화에 관한연구 (A Study on the minimizing of cutting depth in sub-micro machining)

  • 손성민;허성우;안중환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF