• Title/Summary/Keyword: depth of crack

Search Result 601, Processing Time 0.026 seconds

A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack (표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구)

  • So, Tae-Won;Yun, Gi-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

A Study on the Crack Depth Sizing Using ECT Technique for Martensitic Stainless Steel (ECT를 이용한 마르텐사이트 재질의 균열결함 깊이측정 연구)

  • Kim, Wang-Bae;Cheon, Keun-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The flaws detected by the non-destructive surface test methods shall be sized by means of the volumetric test such as an UT(ultrasonic test) or an ECT(eddy current test) for the purpose of analyzing and repairing them. It is generally known that the ECT is a comparatively effective technique for the small size cracks which are located shallowly from the surface. On this study, the ECT technique was tried to size the depth of the crack-like EDM notches, and it is identified that the ECT is an appropriate depth sizing technique for the shallow cracks less than 3mm in the Martensitic CA6NM material.

  • PDF

A Service Life Prediction for Joint and Cracked Concrete Exposed to Carbonation Based on Stochastic Approach (신뢰성 해석을 통한 탄산화에 노출된 타설이음부 및 균열부 콘크리트의 내구수명 평가)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.597-600
    • /
    • 2006
  • In this study, field survey of carbonation for RC column in city is carried out and carbonation behavior in sound, joint, and cracked concrete is also analyzed. Futhermore, probability of durability failure with time is calculated through considering probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. The probability of durability failure in cracked concrete with considering crack width and time is also calculated and service life is predicted based on intended failure probability in domestic specification. Through this study, it is known that service life in a RC column is evaluated differently for local conditions and each service life is rapidly decreased with decrease in cover depth and increase in crack width.

  • PDF

Investigation of vibration and stability of cracked columns under axial load

  • Ghaderi, Masoud;Ghaffarzadeh, Hosein;Maleki, Vahid A.
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1181-1192
    • /
    • 2015
  • In this paper, an analytical method is proposed to study the effect of crack and axial load on vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been simulated by a torsional spring with connecting two segments of column in crack location. By solving governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and buckling load as well as buckling load are investigated. The results show that the presents of crack cause to reduction in natural frequencies and buckling load whereas this reduction is affected by the location and depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the experimental data reported in the literature.

Maximum Crack Width Control in Concrete Bridges Affected By Corrosion (부식을 고려한 콘크리트 교량의 최대 균열폭 제어)

  • Cho, Tae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

A Study on Watertightness Effect of Waterproofing Admixture Mixed Redispersible (재유화형 분말수지계와 규산질계 혼합형 구체방수재의 방수효과에 관한 연구)

  • 김무한;오상근;배기선;박선규;김용로
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.39-46
    • /
    • 2000
  • This study is to investigate the watertightness properties of waterproofing admixture mixed redispersible polymer and siliceous powder. Series I deals with change in micro-structure of mortar by waterproofing admixture according to the water/cement ratios of 0.5, 0.6, 0.7 and 0.8 Crystal growth in micro-structure was observed through SEM to estimate on the watertightness effect of it. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. The result of this study can be summarized as follows. 1) Fluidity of mortar and concrete was increased by adding waterproofing admixture. 2) From observation through SEM. Crystals grew larger and denser in micro-structure as fiberic crystalization. 3) Waterproofing admixture is good watertightness properties in a level of high water/cement ratios and long limit of time. 4) Crack restoration capacity was appeared and durability was progressed by waterproofing admixture.

Stability Analysis of Pipe Conveying Fluid with Crack and Attached Masses (크랙과 부가질량들을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.121-131
    • /
    • 2008
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity. As attached masses are increased, the region of re-stabilization of the system is decreased but the region of divergence is increased.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Fracture Behavior of CIP Anchor in Cracked Concrete (균열 콘크리트 면에서의 CIP앵커의 파괴거동)

  • 김호섭;윤영수;윤영수;박성균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.169-174
    • /
    • 2001
  • This study concerns crack effect on concrete anchor system and prediction of tensile capacity, as governed by concrete cone failure, of single anchors located at center of concrete specimen. To Investigate crack effect three different types of crack such as crack width of 0.2mm and 0.5nm, crack depth of loom and 20cm, and crack location of center and biased point were simulated. The static tensile load was subjected to 7/8 in. CIP anchor embedded in concrete of strength 280kg/$cm^{2}$. Tested pullout capacity was compared to prediction value by each current design method (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CC Method), In these comparison CC Method and ACI revision showed almost same value in uncracked concrete specimen, however in cracked concrete CC Method showed conservativeness. Therefore the design by ACI 349 revision is recommended for the safe and economic design.

  • PDF