• Title/Summary/Keyword: depth map interpolation

Search Result 27, Processing Time 0.033 seconds

Implicit Surface Representation of Three-Dimensional Face from Kinect Sensor

  • Wibowo, Suryo Adhi;Kim, Eun-Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • Kinect sensor has two output data which are produced from red green blue (RGB) sensor and depth sensor, it is called color image and depth map, respectively. Although this device's prices are cheapest than the other devices for three-dimensional (3D) reconstruction, we need extra work for reconstruct a smooth 3D data and also have semantic meaning. It happened because the depth map, which has been produced from depth sensor usually have a coarse and empty value. Consequently, it can be make artifact and holes on the surface, when we reconstruct it to 3D directly. In this paper, we present a method for solving this problem by using implicit surface representation. The key idea for represent implicit surface is by using radial basis function (RBF) and to avoid the trivial solution that the implicit function is zero everywhere, we need to defined on-surface point and off-surface point. Based on our simulation results using captured face as an input, we can produce smooth 3D face and fill the holes on the 3D face surface, since RBF is good for interpolation and holes filling. Modified anisotropic diffusion is used to produced smoothed surface.

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Depth Map Interpolation for Virtual View Synthesis (가상시점 영상합성을 위한 깊이 영상 보간법)

  • Kim, Do-Young;Ho, Yo-Sung
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.426-427
    • /
    • 2012
  • 본 논문은 부호화된 저해상도의 깊이 영상과 고해상도의 색상 영상을 입력으로 고해상도의 깊이 영상을 생성하는 새로운 방법을 제안한다. 제안하는 방법은 결합 양측 필터를 이용하여 저해상도 깊이 영상의 경계 정보를 향상시킨다. 그런 다음, 깊이 영상 보간 단계에서 향상된 경계 정보를 참조하여 고품질 고해상도의 깊이 영상을 생성한다. 실험을 통한 깊이 영상과 합성영상의 화질 평가에서, 제안하는 방법이 기존의 3DV-ATM 깊이 영상 보간법보다 높은 성능을 보인다.

  • PDF

Low Resolution Depth Interpolation using High Resolution Color Image (고해상도 색상 영상을 이용한 저해상도 깊이 영상 보간법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.60-65
    • /
    • 2013
  • In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.

  • PDF

Depth map Resolution and Quality Enhancement based on Edge preserving interpolation (경계 보존 보간법을 이용한 깊이 영상의 해상도 및 품질 개선)

  • Kim, Ji-Hyun;Choi, Jin-Wook;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.39-41
    • /
    • 2011
  • 본 논문에서는 깊이 영상의 해상도와 품질을 향상시키는 방법을 제안한다. 일반적으로 2D-plus-Depth 구조의 3D 콘텐츠에서는 깊이 영상의 품질이 매우 중요하다. 최근 들어 Time-of-Flight (TOF) 방식의 깊이 센서가 깊이 영상 획득에 많이 사용되고 있는데 TOF 깊이 센서가 제공하는 깊이 영상은 저해상도이기 때문에 고해상도 3D 콘텐츠를 제작하기 위해서는 깊이 영상의 해상도를 상향 변환하는 것이 필수적이다. 또한 고품질의 깊이 영상을 얻기 위해서는 물체 간의 경계를 정교하게 보존하는 것이 중요하다. 최근에는 깊이 영상의 해상도 상향 변환을 위해서 Joint Bilateral Upsampling(JBU) 방식이 많이 사용되고 있다. 본 논문은 깊이 영상의 해상도를 높임에 있어서 우선 보간법을 수행하여 영상의 상향 변환 시에 생긴 빈 홀들의 값을 채워준 후 Bilateral Filtering을 수행함으로써 성능을 높인다. 일반적으로 영상을 상향 변환을 할 때 다양한 방법들이 있는데 본 논문에서는 Nearest Neighborhood(NN), Gaussian과 경계 보존 보간법, 경계 보존 보간법과 Fast Curvature Based Interpolation(FCBI)를 결합한 보간법을 사용하였다. 실험 결과 제안 방법이 기존 방법보다 우수한 성능을 가짐을 보여준다. 또한 경계 보존 보간법과 FCBI를 결합한 보간법을 이용해서 상향 변환을 수행한 결과가 다른 보간법들에 의한 결과보다 우수하다는 점을 알 수 있다.

  • PDF

Distributed Coding Scheme for Multi-view Video through Efficient Side Information Generation

  • Yoo, Jihwan;Ko, Min Soo;Kwon, Soon Chul;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1762-1773
    • /
    • 2014
  • In this paper, a distributed image coding scheme for multi-view video through an efficient generation of side information is proposed. A distributed video coding technique corrects the errors in the side information, which is generated with the original image, by using the channel coding technique at the decoder. Therefore, the more correct the generated side information is, the better the performance of distributed video coding. The proposed technique is to apply the distributed video coding schemes to the image coding for multi-view video. It generates side information by selectively and efficiently using both 3-dimensional warping based on the depth map with spatially adjacent frames and motion-compensated temporal interpolation with temporally adjacent frames. In this scheme the difference between the adjacent frames, the sizes of the motion vectors for the adjacent blocks, and the edge information are used as the selection criteria. From the experiments, it was observed that the quality of the side information generated by the proposed technique was improved by the average peak signal-to-noise ratio of 0.97dB than the one by motion-compensated temporal interpolation or 3-dimensional warping. The result from analyzing the rate-distortion curves revealed that the proposed scheme could reduce the bit-rate by 8.01% on average at the same peak signal-to-noise ratio value, compared to previous work.

The Simulation of Flood Inundation of Namdae Stream with GIS-based FLUMEN model (GIS 기반 FLUMEN 모형을 이용한 남대천 홍수범람 모의실험)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This study simulated flood inundation each frequency rainfall using GIS spatial information and FLUMEN model for part of Muju-Namdae Stream. To create geomorphology for the analysis of flood inundation, Triangle Irregular Network(TIN) was constructed using GIS spatial interpolation method based on digital topographic map and river profile data, unique data source to represent real topography of the river areas. And also flood inundation was operated according to the levee collapse to consider extremely flood damage scenarios. As the analysis of result, the inundation area in the left levee collapse showed more high as 3.13, 3.69, and 4.17 times comparing with one of right levee for 50, 100, and 200 year frequency rainfall and showed 1.00, 2.15, and 3.34 times comparing with one of right levee in the inundation depth with over 1.0 meter, which can cause casualties. As the analysis of inundation area of the inundation depth with over 1.0 meter, which can cause casualties in left levee collapse, it increased more high as 263% and 473% when 50 year frequency change into 100 and 200 year frequency. Also As the analysis of inundation area of the inundation depth with over 1.0 meter in right levee collapse, it increased high as 123% and 142% when 50 year frequency change into 100 and 200 year frequency. Especially, the inundation area of the inundation depth with 3.0~3.5m showed more high as 263% and 489% when 50 year frequency change into 100 and 200 year frequency. It is expected that flood inundation map of this paper could be important decision making data to establish land use planning and water treatment measures.

Rendering Quality Improvement Method based on Depth and Inverse Warping (깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-724
    • /
    • 2021
  • The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.

Mapping Technique for Heavy Snowfall Distribution Using Terra MODIS Images and Ground Measured Snowfall Data (Terra MODIS 영상과 지상 적설심 자료를 이용한 적설분포도 구축기법 연구)

  • Kim, Saet-Byul;Shin, Hyung-Jin;Lee, Ji-Wan;Yu, Young-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • This study is to make snowfall distribution map for the 4 heavy snowfall events of January 2001, March of 2004, December of 2005 and January of 2010, and compare the results for three cases of construction methods. The cases are to generate the map by applying IDW(Inverse Distance Weighting) interpolation to 76 ground measured snowfall point data (Snow Depth Map; SDM), mask out the SDM with the MODIS snow cover area (MODIS SCA) of Terra MODIS (MODerate resolution Imaging Spectroradiometer) (SDM+MODIS SCA; SDM_M), and consider the snowdepth lapse rate of snowfall by elevation (Digital Elevation Model; DEM) to the second case (SDM_M+DEM; SDM_MD). By applying the MODIS SCA, the SCA of 4 events was 62.9%, 44.1%, 52.0%, and 69.0% for the area of South Korea. For the average snow depth, the SDM_M decreased 0.9cm, 1.9cm, 0.8cm, and 1.5cm compared to SDM and the SDM_MD increased 1.3cm, 0.9cm, 0.4cm, and 1.2cm respectively.

Depth map resolution enhancement based on adaptive weighted interpolation (적응적 가중치 보간법을 이용한 깊이 영상의 해상도 향상 기법)

  • Lim, Jong Myeong;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.26-28
    • /
    • 2012
  • 본 논문에서는 깊이 영상의 해상도를 향상시키는 기법을 제안한다. 최근 TOF(time-of-flight) 방식의 깊이 센서가 깊이 영상 획득에 많이 사용되고 있다. 그러나 TOF 깊이 센서가 제공하는 깊이 영상은 대부분 저해상도이기 때문에 고해상도의 콘텐츠 제작을 위해서는 깊이 영상의 해상도를 향상시켜주는 것이 필수적이다. 본 논문에서는 깊이 영상의 해상도를 높이기 위하여 적응적 가중치 보간법을 적용한 후, Bilateral 필터링을 수행하여 품질을 높인다. 일반적으로 영상의 해상도를 높일 때 보간법을 많이 사용하는데, 본 논문에서는 이러한 보간법들을 사용하여 깊이 영상의 해상도를 높였을 때보다 제안하는 기법의 성능이 우수함을 실험을 통해 확인하였다.

  • PDF