• Title/Summary/Keyword: depth image

Search Result 1,830, Processing Time 0.035 seconds

Depth sensitivity of stereoscopic displays

  • Choi, Byeong-Hwa;Choi, Dong-Wook;Lee, Ja-Eun;Lee, Seung-Bae;Kim, Sung-Chul
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • Depth sensitivity is considered one of the factors influencing 3D displays the most. In this paper, the perceptual 3D depth was quantitatively measured to compare the depth difference among the display devices. No difference was found in the typical display performance among the devices, but the subjective evaluation of the depth sensitivity where the disparity was varied showed that the organic light emitting diode (OLED) had the highest performance, mainly due to its almost 0% crosstalk, one of the features of OLED. Crosstalk is a form of image superposition that greatly affects the depth sensitivity. The experiment results showed that the quantitative depth sensitivity varies due to geometric factors such as disparity, viewing distance, and subjective sensitivity, depending on the display image characteristics, such as crosstalk and contrast.

Enhancing Depth Measurements in Depth From Focus based on Mutual Structures (상호 구조에 기반한 초점으로부터의 깊이 측정 방법 개선)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.17-21
    • /
    • 2022
  • A variety of techniques have been proposed in the literature for depth improvement in depth from focus method. Unfortunately, these techniques over-smooth the depth maps over the regions of depth discontinuities. In this paper, we propose a robust technique for improving the depth map by employing a nonconvex smoothness function that preserves the depth edges. In addition, the proposed technique exploits the mutual structures between the depth map and a guidance map. This guidance map is designed by taking the mean of image intensities in the image sequence. The depth map is updated iteratively till the nonconvex objective function converges. Experiments performed on real complex image sequences revealed the effectiveness of the proposed technique.

A Study on 2D/3D image Conversion Method using Create Depth Map (2D/3D 변환을 위한 깊이정보 생성기법에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1897-1903
    • /
    • 2011
  • This paper discusses a 2D/3D conversion of images using technologies like object extraction and depth-map creation. The general procedure for converting 2D images into a 3D image is extracting objects from 2D image, recognizing the distance of each points, generating the 3D image and correcting the image to generate with less noise. This paper proposes modified new methods creating a depth-map from 2D image and recognizing the distance of objects in it. Depth-map information which determines the distance of objects is the key data creating a 3D image from 2D images. To get more accurate depth-map data, noise filtering is applied to the optical flow. With the proposed method, better depth-map information is calculated and better 3D image is constructed.

Evaluation of Depth Image of IR Range Sensor with Face Recognition Algorithms (적외선 거리 센서 깊이이미지를 이용한 얼굴 인식 알고리즘 평가)

  • Kwon, Ki-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3666-3671
    • /
    • 2012
  • We evaluate the face detection and recognition of depth image that is obtained by infrared range sensor. and Face recognition was usually focused on accuracy aspect but it is not enough to evaluate the performance in testing for real world application. In this paper, we evaluate the overall performance like accuracy, training, test speed and memory use for the well known face recognition algorithm like PCA, LDA, ICA and SVM. This experiment evaluate the good results of depth and colored depth image compatible with the colored image although the file size of depth and colored depth image is 30%~40% less than the colored image. Whereas, LDA got the good accuracy performance next to the SVM and also shows the good performance in speed and the amount of memory.

Computational Integral Imaging with Enhanced Depth Sensitivity

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam;Kwon, Ki-Chul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • A novel computational integral imaging technique with enhanced depth sensitivity is proposed. For each lateral position at a given depth plane, the dissimilarity between corresponding pixels of the elemental images is measured and used as a suppressing factor for that position. The intensity values are aggregated to determine the correct depth plane of each plane object. The experimental and simulation results show that the reconstructed depth image on the incorrect depth plane is effectively suppressed, and that the depth image on the correct depth plane is reconstructed clearly without any noise. The correct depth plane is also exactly determined.

Scalable Coding of Depth Images with Synthesis-Guided Edge Detection

  • Zhao, Lijun;Wang, Anhong;Zeng, Bing;Jin, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4108-4125
    • /
    • 2015
  • This paper presents a scalable coding method for depth images by considering the quality of synthesized images in virtual views. First, we design a new edge detection algorithm that is based on calculating the depth difference between two neighboring pixels within the depth map. By choosing different thresholds, this algorithm generates a scalable bit stream that puts larger depth differences in front, followed by smaller depth differences. A scalable scheme is also designed for coding depth pixels through a layered sampling structure. At the receiver side, the full-resolution depth image is reconstructed from the received bits by solving a partial-differential-equation (PDE). Experimental results show that the proposed method improves the rate-distortion performance of synthesized images at virtual views and achieves better visual quality.

2D/3D conversion method using depth map based on haze and relative height cue (실안개와 상대적 높이 단서 기반의 깊이 지도를 이용한 2D/3D 변환 기법)

  • Han, Sung-Ho;Kim, Yo-Sup;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.351-356
    • /
    • 2012
  • This paper presents the 2D/3D conversion technique using depth map which is generated based on the haze and relative height cue. In cases that only the conventional haze information is used, errors in image without haze could be generated. To reduce this kind of errors, a new approach is proposed combining the haze information with depth map which is constructed based on the relative height cue. Also the gray scale image from Mean Shift Segmentation is combined with depth map of haze information to sharpen the object's contour lines, upgrading the quality of 3D image. Left and right view images are generated by DIBR(Depth Image Based Rendering) using input image and final depth map. The left and right images are used to generate red-cyan 3D image and the result is verified by measuring PSNR between the depth maps.

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

Touch Pen Using Depth Information

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1313-1318
    • /
    • 2015
  • Current touch pen requires the special equipments to detect a touch and its price increases in proportion to the screen size. In this paper, we propose a method for detecting a touch and implementing a pen using the depth information. The proposed method obtains a background depth image using a depth camera and extracts an object by comparing a captured depth image with the background depth image. Also, we determine a touch if the depth value of the object is the same as the background and then provide the pen event. Using this method, we can implement a cheaper and more convenient touch pen.

A Method of Estimating the Human Height Using Depth Images (깊이영상을 이용한 사람의 키 추정 방법)

  • Kim, Heung-Jun;Park, Yoo-Hyun;Kwon, Soon-Kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • In This Paper, We Propose a Method to Estimate the Human Height from the Depth Image Obtained using a Depth Camera. Using the depth Image, Accurate Measurement for Human Height is Possible Compared with Color Image. This Paper Presents a Method to Detect the Center of a Person in the Vertical Direction and to Accumulate the Measured Height Values ​at the Center Position. Simulation Results Show that the Proposed Method has Better Performance than the Conventional Methods.