본 논문에서는 능동형 센서와 연결된 카메라에서 얻어진 깊이 정보와 칼라 영상으로부터 컴퓨터형성 홀로그램을 제작하는 방법을 제안하였다. CGH 생성을 위해 컴퓨터그래픽 모델을 사용하는 기존의 홀로그래픽 디스플레이 시스템과는 달리, 카메라로 획득되는 각 물체의 칼라 정보 뿐 아니라 깊이 정보를 포함하는 카메라의 실사 영상을 사용하였다. 이 과정은 실사 물체로부터 깊이가 포함된 영상정보를 획득하는 단계와 깊이 정보로부터 추출된 3D 정보를 이용하여 CGH를 생성하는 두 가지 단계로 구성되어 있다. 또한, 홀로그래픽 디스플레이 시스템을 구성하여 제작된 CGH를 디스플레이 하였다. 실험 시스템에서는 1408X1050의 해상도와 10.4um의 픽셀 크기를 갖는 반사형 LCD 패널을 사용하여 CGH로부터 영상을 재생하였다.
Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
Advances in concrete construction
/
제9권3호
/
pp.257-265
/
2020
Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.
The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.
We propose a hole-filling method to solve discontinuous depth representation and to reduce the visible seams and cracks that cause the limitation of the viewing angle of the three-dimensional (3D) image in the multilayer type 3D display system. The occlusion and the disocclusion regions between layers, such as the visible seams and cracks, are a major bottleneck of the multilayer type 3D display system to represent a volumetric 3D image by stacking multiple images. As a result, in the reconstructed 3D image, the visible seams and cracks appear as brighter overlapping and undesirable cut-off. In order to resolve the problems above, we applied the depth-fused effect to the sub-depth map generating algorithm and improve the viewing characteristics of the multilayer type 3D display. The experimental demonstrations are also provided to verify the proposed scheme.
2D 이미지로부터 카메라의 위치 정보를 추정할 수 있는 Structure-from-Motion (SfM) 기술과 dense depth map 을 추정하는 Multi-view Stereo (MVS) 기술을 이용하여 2D 이미지에서 point cloud 와 같은 3D data 를 얻을 수 있다. 3D data 는 VR, AR, 메타버스와 같은 컨텐츠에 사용되기 위한 핵심 요소이다. Point cloud 는 보통 VR, AR, 메타버스와 같은 많은 분야에 이용되기 위해 mesh 형태로 변환된 후 texture 를 입히는 Texturing 과정이 필요하다. 기존의 Texturing 방법에서는 mesh의 face에 사용될 image의 outlier를 제거하기 위해 color 정보만을 이용했다. Color 정보를 이용하는 방법은 mesh 의 face 에 대응되는 image 의 수가 충분히 많고 움직이는 물체에 대한 outlier 에는 효과적이지만 image 의 수가 부족한 경우와 부정확한 카메라 파라미터에 대한 outlier 에는 부족한 성능을 보인다. 본 논문에서는 Texturing 과정의 view selection 에서 depth 정보를 추가로 이용하여 기존 방법의 단점을 보완할 수 있는 방법을 제안한다.
본 논문에서는 색상 카메라와 Time-of-Flight (TOF) 깊이 카메라를 이용해 촬영된 장면에서 전경 영역을 분리하고 영상의 고해상도 깊이 정보를 구하는 방법에 대해 제안한다. 깊이 카메라는 장면의 깊이 정보를 실시간으로 측정할 수 있는 장점이 있지만 잡음과 왜곡이 발생하고 색상 영상과의 상관도도 떨어진다. 따라서 이를 색상 영상과 함께 사용하기 위한 색상 영상의 영역화 및 깊이 카메라 영상의 3차원 투영(warping) 작업, 깊이 경계 영역 탐색 등을 진행한 후, 전경의 객체를 분리하고, 객체와 배경에 대하여 깊이 값 계산한다. 깊이 카메라로부터 얻은 초기 깊이 정보를 이용하여 색상 영상에서 구해진 깊이 맵은 기존의 방법인 스테레오 정합 등의 방법보다 우수한 성능을 나타내었고, 무늬가 없는 영역이나 객체 경계 영역에서도 정확한 깊이 정보를 구할 수 있었다.
본 논문에서는 한 장의 이미지에서 학습을 통하여 영역 별 깊이 정보를 추정할 때 사용되는 특징 정보를 유전 알고리즘(Genetic Algorithm)을 기반으로 축소하고 깊이 정보 추정 시간을 단축하는 방법에 대해서 기술 한다. 깊이 정보는 이미지의 에너지 값과 텍스쳐의 기울기 등을 특징으로 생성하여 특징들의 관계를 기반으로 추정 된다. 이 때 사용되는 특징의 차원이 크기 때문에 연산시간이 증가하고 특징의 중요성을 판단하지 않고 사용하여 오히려 성능에 나쁜 영향을 미치기도 한다. 이에 따라 중요성을 판단하여 특징의 차원을 줄일 필요가 있다. 본 논문에서 제안한 방법을 미국 스탠포드(Stanford)대학에서 제공하는 벤치마크 데이터로 실험한 결과, 특징의 추출과 깊이 추정 연산 시간이 모든 특징을 사용하는 방법에 비하여 약 60%정도 향상되고 정확도가 평균 0.4%에서 최대 2.5% 향상 되었다.
본 논문은 단시안에 투영된 3차원 물체의 Image에서 측정된 명암강도의 차이를 이용하여 3차원 물체의 절대거리 z 및 형상을 유출하는 수치적인 방법을 연구, 단시안에 의해서도 Camera와 물체사이의 3차원 절대거리가 구해질 수 있음을 보여주고 있다. 기발표된 이론과는 다르게 본 논문에서는 점광원을 이용하여 투영된 명암강도와 3차원 물체의 절대거리 및 형상과의 관계를 물체가 Uniform Lambertian이라는 가정하에서 새로운 관계식으로 정립하였다. 정립된 Non-Linear 관계식은 Smoothness 조건아래 $'Calculus of Variation$'방법을 사용하여 수학적 Algorithm으로 정리되어 Programming 되었고 간단한 실험방법을 이용하여 실제 Data에 적용시켜 그 타당성을 조사하였다.당성을 조사하였다.
본 논문에서는 집적영상에서 정치실영상을 재생하기 위한 깊이변환법을 제안한다. 종래의 집적영상은 재생상이 반전된 깊이로 재생되는 도치영상 문제가 있다. 재생상의 깊이는 개별 요소영상의 좌표에 의해 결정된다. 요소영상 획득과 재생시스템의 기하학적 관계를 분석하여 재생상의 깊이 변환 에 필요한 수식 유도가 가능하며 이를 이용하여 도치영상을 정치영상으로 변환할 수 있다. 제안하는 방법의 유용성을 보이고 또한 이론적 분석을 검증하기 위하여 실험을 수행하였고 그 결과를 제시한다.
카메라로부터 획득한 여러 장의 영상에서 3차원 정보를 얻어내기 위한 Extended Depth of Focus(EDF) 알고리듬은 최근 많은 연구가 이루어지고 있다. 피사물체의 깊이정보에 따른 제한된 초점으로 인해 초점이 일부분 맞는 여러 장의 이미지를 가지고 EDF알고리듬은 각 영상들의 focus 영역에서 하나의 focused 영상과 depth영상을 취득한다. 대부분의 영상처리 알고리듬이 그렇듯, EDF 알고리듬에 사용되는 파라메타들의 초기설정에 따라 결과에 큰 영향을 준다. 본 논문에서는 EDF알고리듬을 적용하기 전 입력영상의 기반으로 pyramid, wavelet transform, complex wavelet transform을 사용하였으며 EDF알고리즘에서 사용되는 파라메타들의 설정에 따른 각 알고리즘의 성능을 분석하였다. 본 논문에서 제시한 파라메타들은 입력영상의 크기에 따른 down sampling의 단계, 영상의 기반 알고리듬의 영상 복원에 사용되는 최하위 레벨의 이미지에 대한 취득 형태, 연산에 쓰이는 window size의 크기이다. 우리는 실험을 통해 제시한 입력영상에 따라 각 파라메타들이 미치는 영향에 대해 분석하였고, 기존에 사용되었던 일반적인 파라메타 선정방식보다 최적화된 파라메타 선정방식을 통해 얻어진 결과영상이 3dB ~ 19dB정도 개선된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.