• Title/Summary/Keyword: depth effect

Search Result 4,273, Processing Time 0.027 seconds

FRACTURE STRENGTH OF THE IPS EMPRESS CROWN: THE EFFECT OF OCCLUSAL DEPTH AND AXIAL INCLINATION ON UPPER FIRST MOLAR (IPS Empress 도재관의 파절강도 : 상악 제1대구치에서 교합면 두께와 축면경사도에 따른 영향)

  • Choi Teak-Rim;Lee Hae-Young;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.171-183
    • /
    • 2001
  • The purpose of this study was compare the fracture strength of the IPS Empress ceramic crown according to the occlusal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ},\;8^{\circ},\;12^{\circ}$) of the upper first molar. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and were cemented with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results of this study were as follows: 1. The fracture strength of the ceramic crown with 2.5mm depth and $8^{\circ}$ inclination was the highest (1393N). Crowns of 1.5mm depth and $4^{\circ}$ inclination had the lowest strength (1015N) 2. There were no significant differences of the fracture strength according to occlusal depth and axial inclination. 3. Most fracture lines began at the loading area and extended through proximal surface perpendicular to the margin, irrespective of occlusal depth. 4. There was positive correlation between the fracture strength and the fracture surface area of crowns.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer

  • Kainuma, Shigenobu;Yamamoto, Yuya;Ahn, Jin-Hee;Jeong, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.191-201
    • /
    • 2018
  • The corrosion environments in a steel structure are significantly different depending on the individual parts of the members. To ensure the safety of weathering steel structures, it is important to evaluate the time-dependent corrosion behavior. Thus, the progress and effect of corrosion damage on weathering steel members should be evaluated; however, the predicted corrosion depth, which is affected by the corrosion environment, has not been sufficiently considered until now. In this study, the time-dependent thicknesses of the corrosion product layer were examined to quantifiably investigate and determine the corrosion depth of the corroded surface according to the exposure periods and corrosion environments. Thus, their atmospheric exposure tests were carried out for 4 years under different corrosion environments. The relationship between the thickness of the corrosion product layers and mean corrosion depth was examined based on the corrosion environment. Thus, the micro corrosion environments on the skyward and groundward surfaces of the specimens were monitored using atmospheric corrosion monitor sensors. In addition, the evaluated mean corrosion depth was calculated based on the thickness of the corrosion product layer in an atmospheric corrosion environment, and was verified through a comparison with the measured mean corrosion depth.

FRACTURE STRENGTH OF THE IPS EMPRESS CROWN:THE EFFECT OF OCCLUSAL DEPTH AND AXIAL INCLINATION ON UPPER FIRST PREMOLAR CROWNS (IPS Empress 도재관의 파절강도 : 상악제1소구치에서 교합면 두께와 축면 경사도에 따른 영향)

  • Dong, Jin-Keun;Oh, Sang-Chun;Kim, Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.127-133
    • /
    • 1999
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the occlusal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ},\;8^{\circ},\;12^{\circ}$) of the upper first premolar. After 10 metal dies were made fir each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results were : 1. The fracture strength of the ceramic crown with 2.5mm depth and $12^{\circ}$ inclination was the highest (630N). Crowns of 1.5mm depth and $4^{\circ}$ inclination had the lowest strength(378N). There were no significant differences of the fracture strength by axial inclination in same occlusal depth group. 2. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin, irrespective of occlusal depth.

  • PDF

Effect of Sedimentation Depth and Water Depth on the Integrity of River Crossing Pipeline (퇴적깊이와 수심이 하천통과 배관의 건전성에 미치는 영향)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • River crossing pipelines have been being operated with buried depth of 1.2~4m underneath river bottom to prevent buoyance and external impact. River crossing pipelines have to show resistance to soil load and hydrostatic pressure. In this study, structural integrity of the river crossing pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. Hoop stress increased with increasing buried depth under identical water height in case of without concrete encasement, however, hoop stress decreased with increasing water height under identical buried depth.

The Effect of Water Depth and Exercise Speed on Physiological Responses Immediately After Aquatic Squat Exercise

  • Gyu-sun, Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.185-193
    • /
    • 2024
  • This study aimed to investigate the immediate physiological responses, including heart rate, blood pressure, and rate pressure product (RPP), following squat exercises performed at three water depths (ground, knee depth, waist depth) and two speed conditions (60bpm speed, Max speed). The participants consisted of 10 men in their 20s with over 6 months of resistance exercise experience. For the 60bpm speed squats, participants performed 30 repetitions in 1 minute at a rate of 2 seconds per repetition, while for Max speed squats, they performed at Max speed without a set limit on the number of repetitions for 1 minute. All experiments were conducted with a random assignment. The study results showed that immediately after the aquatic squat exercise, the average heart rate, blood pressure, and cardiac load were higher in the order of knee depth, ground level, and waist depth at both 60bpm speed and Max Speed. At 60bpm speed, the heart rate was higher in the order of ground level, knee depth, and waist depth. Overall, exercise in an aquatic environment was considered to impose relatively lower physical burden compared to land-based exercise. Therefore, it is suggested that depending on individual fitness levels and exercise goals, appropriately combining aquatic exercise, which imposes lower immediate physiological burden, and land-based exercise may lead to safer and more effective exercise methods.

Crack Identification Using Optimization Technique (수학적 최적화기법을 이용한 결함인식 연구)

  • Seo, Myeong-Won;Yu, Jun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.190-195
    • /
    • 2000
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure. Nikolakopoulos et. al. used the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However the intersecting point of the superposed contours is not only difficult to find but also incorrect to calculate. A method is presented in this paper which uses optimization technique for the location and depth of the crack. The basic idea is to find parameters which use the structural eigenfrequencies on crack depth and location and optimization algorithm. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. Method of optimization is augmented lagrange multiplier method and search direction method is BFGS variable metric method and one dimensional search method is polynomial interpolation.

An Experimental Study on the Shallow Water Effect on Series 60 Hull Form (천수 영역에서의 Series 60 선형에 대한 실험적 고찰)

  • H.E. Kim;S.H. Seo;Y.G. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.21-26
    • /
    • 2000
  • For coastal service ships, the water depth is a very important parameter in the design stage of the hull form that has an influence on the restriction of the speed and draft of ships. In this study, the water depth is important for ship design. In this research, the change of total resistance, trim and sinkage due to the variation of water depth are measured by using on equipment for shallow water condition. For the basic research step about the shallow water effect, the effects on Series60($C_B=0.6$) hull form are experimented. To compare with existing experiment results, the test conditions are same with those. The water depth conditions are 10, 15, 20, 25% of LPP of the model ship, respectively.

  • PDF

Effect of Ground Granulated Blast Furnace Slag, Pulverized Fuel Ash, Silica Fume on Sulfuric Acid Corrosion Resistance of Cement Matrix

  • Jeon, Joong-Kyu;Moon, Han-Young;Ann, Ki-Yong;Kim, Hong-Sam;Kim, Yang-Bea
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.97-102
    • /
    • 2006
  • In this study, the effect of supplementary materials(GGBS, PFA, SF) on sulfuric acid corrosion resistance was assessed by measuring the compressive strength, corroded depth and weight change at 7, 28, 56, 91, 180 and 250 days of immersion in sulfuric acid solution with the pH of 0.5, 1.0, 2.0 and 3.0. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders: increased corroded depth and weight change, and lowered the compressive strength. 60% GGBS mortar specimen was the most resistant to acid corrosion in terms of the corroded depth, weight change and compressive strength, due to the latent hydraulic characteristics and lower portion of calcium hydroxide. The order of resistance to acid was 60% GGBS>20% PFA>10% SF>OPC. In a microscopic examination, it was found that acid corrosion of cement matrix produced gypsum, as a result of decomposition of hydration products, which may loose the structure of cement matrix, thereby leading to a remarkable decrease of concrete properties.

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.