• 제목/요약/키워드: depth dose

검색결과 505건 처리시간 0.026초

토모테라피를 이용한 표면 치료 계획과 선량 분석 (Superficial Dosimetry for Helical Tomotherapy)

  • 김송이;유세환;송태수;김용남;금기창;조재호;이창걸;성진실
    • Radiation Oncology Journal
    • /
    • 제27권2호
    • /
    • pp.103-110
    • /
    • 2009
  • 목 적: 피부와 같이 표면이 넓고 굴곡이 있는 부분을 치료할 때 토모테라피의 유용성과 치료 계획에서 계산된 표면 조사량의 정확성을 알아보고자 하였다. 대상 및 방법: 실린더 모양의 치즈 팬텀을 이용하여 2가지의 치료 계획을 세웠다. 첫 번째 계획은 표면에서 1 cm 깊이까지 고리 모양의 치료 부위를 설정하고, 여기에 2 Gy의 선량을 처방하였다. 다른 계획은 표면에서 5 mm 바깥쪽부터 1 cm 깊이까지 고리 모양의 치료 부위를 설정하고, 여기에 2 Gy의 선량을 처방하였다. 표면에서 2 cm 밑의 안쪽 부분은 차폐하여 방사선이 직접 들어가지 않도록 하였다. 표면 선량과 깊이에 따른 선량 분포를 측정하기 위하여, EDR2 필름을 팬텀 안에 넣었으며, TLD 칩 6개를 표면에 부착하였다. 결 과: 필름을 분석한 결과, 표면 선량은 첫 번째 계획에서 118.7 cGy였고 두 번째 계획에서 130.9 cGy였다. TLD 칩을 분석한 결과, 필름에 비하여 표면 선량이 높게 나왔는데 이것은 TLD 칩의 두께로 인한 것으로 생각된다. 처방 선량의 95%에 다다르는 깊이는 첫 번째 계획의 경우 2.1 mm, 두 번째 계획의 경우 2.2 mm였다. 최대 선량은 처방 선량의 110%였다. 표면에서 깊어질수록, 선량은 빠르게 감소하였고, 표면에서 2 cm 깊이에서는 처방 선량의 20%만 측정되었다. 결 론: 토모테라피는 피부와 같은 넓고 굴곡진 부위를 치료하는데 유용하다. 하지만 표면에서 2 mm 깊이 이내의 경우 실제 선량이 계획된 선량보다 적게 나타나기 때문에, 이 깊이보다 얕게 위치한 부위를 치료할 경우에는 보상체가 필요하다.

6MV X선에 있어서 쇄기형 조사야와 개방 조사야 사이의 깊이 선량률의 차이 (Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays)

  • 우홍;류삼열;박인규
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.279-285
    • /
    • 1989
  • Tatcher식에 의하여 조직최대선량비와 깊이선량을 6MV X-선의 중심축상에서 측정하였다. 쐐기형 조사야에 있어서 깊이, 조사야 및 쐐기의 두께 등이 증가할수록 깊이선량은 개방 조사야에 비하여 크기가 증가하였다. 그러나 쐐기형 조사야에 있어서 조직산란보정 계수는 개방 조사야에 비하여 그 차이가 $1\%$ 미만이었다. 두 조사야에 있어서 중심축상의 깊이선량백분률의 차이가 발생하는 것은 쐐기에 의해서 X-선이 강화됨을 의미한다. 같은 각도의 쇄기에서 깊이선량백분률과 산란보정계수의 명목쐐기형 조사야와 유효쐐기형 조사야사이의 차이는 없었다. 개방조사야에서 조사야 $6cm{\times}6cm$, 깊이 7cm의 깊이선량백분률은 명목 또는 유효쐐기형 조사야 보다 $3.26\%$가 더 컸다. 그러나 조사야 $(10cm{\times}10cm)$가 커질수록 깊이선량백분률의 차이는 명목 또는 유효쐐기형 조사야보다 더 증가하였다-선량계측차이는 깊이 7cm에서 $3.56\%$, 12cm에서는 $5.30\%$였다 그러므로 심부종양치료시 선량의 계산이나 모니터세팅은 각 쐐기의 깊이 백분선량률과 투과율을 사용하여야 오차를 줄일 수 있을 것으로 사료된다.

  • PDF

광섬유 방사선량계를 이용한 선량보강 영역에서의 심부선량 백분율과 피부 선량률 측정 (Measurement of Skin Dose and Percentage Depth Does in Build-up Region Using a Fiber-optic Dosimeter)

  • 조동현;장경원;유욱재;서정기;허지연;이봉수;조영호
    • 한국광학회지
    • /
    • 제21권1호
    • /
    • pp.16-20
    • /
    • 2010
  • 본 연구에서는 고 에너지 광자선을 조사 할 때, 선량보강 영영에서의 피부 선량률을 측정을 위해 유기 섬광체와 플라스틱 광섬유를 사용한 광섬유 방사선량계를 제작하였다. 광섬유 방사선량계의 센서부에서 발생된 섬광빛은 30 m 길이의 광섬유를 통해 전달되어 광증배관과 전류계로 측정된다. 광섬유 방사선량계로 측정한 선량보강 영역에서의 피부 선량률은 이온 전리함 및 GAFCHROMIC EBT 필름의 측정 결과와 비교 및 분석 하였다.

다엽 콜리메이터와 제작차폐물의 동시 사용시 표면선량 변화 (Surface and Percentage Depth Doses for Multileaf Collimator Conjunction with Conventional Block)

  • 양광모;서현숙
    • 한국의학물리학회지:의학물리
    • /
    • 제13권2호
    • /
    • pp.62-68
    • /
    • 2002
  • 최근 설치된 선형가속기는 다엽 콜리메이터를 장착하고 있다. 기본적으로 다엽 콜리메이트의 사용은 기존의 차폐블럭을 대체하는 역할을 한다. 그러나 다엽 콜리메이터는 폭 1 cm의 콜리메이터가 각각 움직여서 방사선 조사 범위를 만들어 정교한 조사범위를 만들기 어려운 경우가 있을 수 있다. 따라서 조사야를 보다 정밀하게 만들기 위해 다엽 콜리메이터 아래 추가 차폐물을 사용하게 된다. 다엽 콜리메이터 아래 추가 차폐물을 사용할 경우 차폐물과 환자의 피부표면과의 거리가 짧아져 피부표면 선량이 증가하게 되며 최대 선량점(D$_{max}$)이 변할 수 있다. 이와 같은 변화는 조사야의 크기와 방사선의 에너지에 따라 영향을 받을 수 있다. 따라서 본 연구는 다엽 콜리메이터 아래 추가 차폐물을 사용할 때 조사야와 방사선에너지에 따라 표면선량과 최대 선량점의 변화를 측정하여 이들 값이 증가함을 확인하였고 다엽 콜리메이터 아래 추가 차폐물을 사용함으로써 증가한 표면선량은 전자 흡수판으로 2-3 mm 두께의 납판을 사용하여 효과적으로 감소시킬 수 있음을 확인하였다.

  • PDF

측정기에 따른 고에너지 X-선의 표면 선량 및 최대 선량 지점 고찰 (Consideration of Surface Dose and Depth of Maximum Dose Using Various Detectors for High Energy X-rays)

  • 이용하;박경란;이종영;이익재;박영우;이강규
    • Radiation Oncology Journal
    • /
    • 제21권4호
    • /
    • pp.322-329
    • /
    • 2003
  • 목적 .: 고에너지 X-선의 표면 선량과 선량보강(build-up) 영역에서의 선량 분포는 일반적으로 방사선 계측에 사용되는 전리함 측정기로는 정확한 선량 분포를 얻기가 매우 어렵다. 본 연구는 고에너지 X-선 선량 계측에 보편적으로 사용되고 있는 여러 측정기를 이용하여 팬톰 표면에서의 흡수선량과 최대 선량 지점(d$_{max}$)을 측정하여 측정기 사이의 정확성을 비교 분석하고, 각 치료 기관에서 보편적으로 사용되는 측정기 중 표면 선량 측정에 적절한 측정장치를 제안하고 그 유용성을 제시하고자 한다. 대상 및 방법 : 본 실험에서는 6 MV와 IS MV X-선에 대해 조사면이 10$\times$10 cm$^{2}$, SSD=100 cm에서 TLD, 팀블형전리함(thimble type ion chamber), 다이오드 검출기, 다이아몬드 검출기와 Markus 평행판 전리함 등을 이용하여 심부선량백분율(percent depth dose: PDD)을 측정하여, 표면 선량(suface dose)과 최대 선량 지점(dnu)을 비교 분석하고, 또한 TLD 측정 시와 동일 조건으로 Monte Cario 계산을 실행하여 TLD의 측정 결과와 비교하였다. 결과: 6 WV와 IS MV X-선에 대해 Markus 평행판 전리함을 이용하여 측정한 표면 선량은 각각 29.31$\%$와 23.36$\%$으로 측정되었으며, TLD는 37.17$\%$와 24.06$\%$, 다이아몬드 검출기는 34.78$\%$와 24.06$\%$, 다이오드 검출기는 38.18$\%$와 27.8$\%$, 팀블형 전리함은 47.92$\%$와 36.06$\%$ 였으며, Monte Cario 계산에 의한 표면 선량 값은 S MV X-선에 대해 TLD 측정 시와 동일한 조건으로 팬톰 내에 가상적인 TLD를 삽입한 경우 36.22$\%$로 실제 측정값 37.17$\%$와 유사하였다. 최대 선량 지점의 깊이는 모든 측정기에서 6 MV X-선에 대하여 14$\~$16 mm, IS MV X-선에서는 27$\~$29 mm사이의 측정기에 따라 작은 차이를 보였다. 결론 : 표면 선량의 경우에는 측정기에 따라 현저한 차이를 보였으며 Markus 평행판 전리함이 사용된 측정기 중가장 정확한 결과를 보였고, 팀블형 전리함의 경우 다른 측정기에 비해 약 10$\%$ 이상 높은 선량을 보여 피부 표면에 가까이 위치한 종양에 대한 방사선 치료 계뵉 시에는 임상에서 가장 보편적으로 사용되고 있는 팀블형 전리함의 선량 값을 그대로 사용하기에는 많은 오류가 발생하므로 가능한 표면 선량 측정에 적절한 측정기를 선택하여 사용하거나 측정기 특성을 고려한 보정이 필요할 것으로 생각된다. 최대 선량 지점(d$_{max}$)의 결과는 모든 측정기에서 비슷한 결과를 나타내고 있어 본 실험에서 사용한 모든 측정기는 그 특성에 상관없이 최대 선량 지점 측정에 사용이 가능함을 알 수 있었다.

Initial Dosimetry of a Prototype Ultra-High Dose Rate Electron-Beam Irradiator for FLASH RT Preclinical Studies

  • Hyun Kim;Heuijin Lim;Sang Koo Kang;Sang Jin Lee;Tae Woo Kang;Seung Wook Kim;Wung-Hoa Park;Manwoo Lee;Kyoung Won Jang;Dong Hyeok Jeong
    • 한국의학물리학회지:의학물리
    • /
    • 제34권3호
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: FLASH radiotherapy (RT) using ultra-high dose rate (>40 Gy/s) radiation is being studied worldwide. However, experimental studies such as preclinical studies using small animals are difficult to perform due to the limited availability of irradiation devices and methods for generating a FLASH beam. In this paper, we report the initial dosimetry results of a prototype electron linear accelerator (LINAC)-based irradiation system to perform ultra-high dose rate (UHDR) preclinical experiments. Methods: The present study used the prototype electron LINAC developed by the Research Center of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Korea. We investigated the beam current dependence of the depth dose to determine the optimal beam current for preclinical experiments. The dose rate in the UHDR region was measured by film dosimetry. Results: Depth dose measurements showed that the optimal beam current for preclinical experiments was approximately 33 mA, corresponding to a mean energy of 4.4 MeV. Additionally, the average dose rates of 80.4 Gy/s and 162.0 Gy/s at a source-to-phantom surface distance of 30 cm were obtained at pulse repetition frequencies of 100 Hz and 200 Hz, respectively. The dose per pulse and instantaneous dose rate were estimated to be approximately 0.80 Gy and 3.8×105 Gy/s, respectively. Conclusions: Film dosimetry verified the appropriate dose rates to perform FLASH RT preclinical studies using the developed electron-beam irradiator. However, further research on the development of innovative beam monitoring systems and stabilization of the accelerator beam is required.

전신 방사선조사를 위한 10MV 선형가속기의 선량측정 (The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation)

  • 안성자;강위생;박승진;남택근;정웅기;나병식
    • Radiation Oncology Journal
    • /
    • 제12권2호
    • /
    • pp.225-232
    • /
    • 1994
  • 연구목적 : 전남대학교병원 치료방사선과에서 가동중인 10MV X-ray를 이용하여 전신 방사선 조사에 필요한 기본적인 선량측정자료를 얻고자 하였다. 대상 및 방법 : 환자 전신이 포함될 수 있는 대형조사면을 얻기 위하여 collimator를 완전히 개방하여 조사방향이 수평이 되게 gantry각을 맞추었다. 방사선 선원에서 환자 중심축까지의 거리가 360cm일 때 최대 기하학적 조사면은 $144cm{\times}144cm$이었다. Polystyrene팬텀과 평행평판형 전리함을 이용하여 깊이선량율과 principal 및 diagonal axis에서 측방선량분포를 측정하였다. 또한 1cm두께의 아크릴판을 팬텀의 전면에서 20cm 떨어진 위치에 놓고 표면 선량의 증가와 최대선량점($d_{max}$)의 변화를 측정하였다. SAD 360cm에서 팬텀의 중심에 측정기 위치를 고정시키고 팬텀의 두께를 12cm에서 30cm까지 변화시키면서 MU당 선량율을 측정하였다. 결과 : SSD 345cm, 조사면 크기 $144cm{\times}144cm$의 조건에서 깊이선량율은 10cm 깊이에서 $78.4{\%}$였고, dmax정은 1.8cm이었다. 1cm두께의 아크릴판을 spoiler로 팬텀에서 20cm 띄우고 사용했을 때 dmax점은 1.8cm에서 0.8cm으로 이동하였고, 표면선량은 $61\%$에서 $94\%$로 증가하였다. 평행 2문 조사시 30cm두께의 팬텀에서 선축상 선량분포의 차이는 $7\%$이내였다. $100\%$ 선량점의 선축이탈거리는 principal axis에서 67cm. diagonal axis에서 80cm이었다. 팬텀의 중심에서 측정된 출력계수로 MU당 선량은, (Dose/MU)=$-0.00178{\times}(T/2)+0.08676$ (T:팬텀 두께(Cm))로 표현되는 직선의 관계식을 나타내었다. 결론 : 1)좌우 대향 2문조사 방법으로 30cm두께의 팬텀에 10MV X-ray를 조사하였을 때 선량분포의 차이는 $7\%$이내로 만족스러운 결과를 보였다. 2) 고에너지 광자선으로 전신방사선 조사시 표면선량 증가를 위하여 beam spotter의 사용이 필요할 것으로 사료된다 3) 측방선량분포곡선에서 principal 및 diagonal axis에 따른 선량분포의 차이가 있어 환자 치료시 고려되어야 할 것으로 생각된다 4) 전신방사선조사시 선량분포는 여러 가지 요인에의하여 달라질 수 있기 때문에 직접적인 방법에 의해 측정된 MU당 선량은 깊이와 직선의 관계식을 보여 실제 치료에 적용될 수 있을 것으로 생각된다. 본 연구에서 얻어진 전신 방사선조사에 관한 기본적 선량측정자료는 AAPM보고서 No. 17에서 권장된 범주에 들었으며 향후 임상에 이용될 수 있을 것으로 생각된다.

  • PDF

연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교 (Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter)

  • 최태진;김진희;김옥배
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2008
  • 최근의 방사선 치료선량 계획시스템은 대체로 커널빔을 컨볼루션하여 조직선량을 구하고 있다. 본 연구에서는 광자선 빔에 따른 심부선량과 임의의 깊이에서 프로파일 선량을 구하기 위하여 반복적 수치해석을 통해 투과 필터에 의한 감쇠선량으로부터 에너지 스펙트럼을 구성하였다. 실험은 15 MV X선(Oncor, Siemens사)과 이온선량계 0.125 cc (PTW T31010)을 이용하여 납필터를 투과한 선량을 측정하여 이루어졌다. 15 MV X선의 에너지스펙트럼은 0.25 MeV 간격으로 납필터 0.51 cm에서 8.04 cm의 감쇠선량으로 실측치와 비교하여 구하였다. 실험 연산에서 15 MV X선의 최대유량은 3.75 MeV에서 나타났으며, 평균에너지는 4.639 MeV를 보였으며, 투과선량은 평균 0.6%의 오차인 반면에 최대오차는 납두께 5 cm에서 2.5%를 보였다. 조직선량은 에너지에 크게 의존하므로, 평탄형 필터의 중심과 Tangent 0.075와 0.125인 가장자리의 에너지를 구하였으며, 각각 4.211 MeV와 3.906 MeV로 나타났다. 심부선량과 프로파일 선량은 상업화로 공급되고 있는 선량계획시스템에 중심 선속과 가장자리의 각 에너지스펙트럼을 적용하여 구하여 실측선량률과 비교하였다. 생성된 심부선량 곡선은 조사면 $6{\times}6cm^2$에서 $30{\times}30cm^2$까지 실측치와 비교한 결과 1% 이내의 거의 일치하는 값을 얻었으며, 프로파일 곡선은 $10{\times}10cm^2$에서 1% 이내의 오차를 보였으나, $30{\times}30cm^2$와 같이 큰 조사면의 얕은 깊이에서는 2%의 오차를 보였다. 따라서 투과선량을 연산으로 구한 에너지 스펙트럼이 조직선량을 평가하는 데 상당히 적은 오차범위 내에서 정량적이고 정성적으로 얻을 수 있음을 알 수 있다.

  • PDF

$^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구 (A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields)

  • 강위생;허승재;하성환
    • Radiation Oncology Journal
    • /
    • 제2권2호
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

4MV X-선을 이용한 조직보상체 두께비 연구 및 응용 (A study on tissue compensator thickness ratio and an application for 4MV X-rays)

  • 김영범;정희영;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF