• Title/Summary/Keyword: depth dose

Search Result 509, Processing Time 0.029 seconds

Investigation of organ dose difference of age phantoms for medical X-ray examinations (X선 촬영 시 연령별 장기선량 차이 연구)

  • Park, Sang-Hyun;Lee, Choon-Sik;Kim, Woo-Ran;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection.

LiF TLD in TLD Holder for In Vivo Dosimetry (생체 내 선량측정을 위한, TLD홀더에 넣은 LiF TLD)

  • Kim Sookil;Loh John J.K.;Min Byungnim
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • Prupose : LiF TLD has a problem to be used in vivo dosimetry because of the toxic property of LiF. The aim of this study is to develop new dosimeter with LiF TLD to be used in vivo dosimetry. Materials and methods : We designed and manufactured the teflon box(here after TLD holder) to put TLD in. The external size of TLD holder is $4\times4\times1\;mm^3$ To estimate the effect of TLD holder on TLD response for radiation, the linearity of TLD response to nominal dose were measured for TLD in TLD holder. Measurement were peformed in the 10 MV x-ray beam with LiF TLD using a solid water phantom at SSD of 100 cm. Percent Depth Dose (PDD) and Tissue-Maximum Ratio (TMR) with varying phantom thickness on TLD were measured to find the effect of TLD holder on the dose coefficient used for dose calculation in radiation therapy. Results : The linearity of response of TLD in TLD holder to the nominal dose was improved than TLD only used as dosimeter And in various measurement conditions, it makes a marginnal difference between TLD in TLD holder and TLD only in their responses. Conclusion : It was proven that the TLD in TLD holder as a new dosimetry could be used in vivo dosimetry.

  • PDF

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF

Dosimetric Characteristics of Edge $Detector^{TM}$ in Small Beam Dosimetry (소조사면 선량 계측을 위한 엣지검출기의 특성 분석)

  • Chang, Kyung-Hwan;Lee, Bo-Ram;Kim, You-Hyun;Choi, Kyoung-Sik;Lee, Jung-Seok;Park, Byung-Moon;Bae, Yong-Ki;Hong, Se-Mie;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • In this study, we evaluated an edge detector for small-beam dosimetry. We measured the dose linearity, dose rate dependence, output factor, beam profiles, and percentage depth dose using an edge detector (Model 1118 Edge) for 6-MV photon beams at different field sizes and depths. The obtained values were compared with those obtained using a standard volume ionization chamber (CC13) and photon diode detector (PFD). The dose linearity results for the three detectors showed good agreement within 1%. The edge detector had the best linearity of ${\pm}0.08%$. The edge detector and PFD showed little dose rate dependency throughout the range of 100~600 MU/min, while CC13 showed a significant discrepancy of approximately -5% at 100 MU/min. The output factors of the three detectors showed good agreement within 1% for the tested field sizes. However, the output factor of CC13 compared to the other two detectors had a maximum difference of 21% for small field sizes (${\sim}4{\times}4\;cm^2$). When analyzing the 20~80% penumbra, the penumbra measured using CC13 was approximately two times wider than that using the edge detector for all field sizes. The width measured using PFD was approximately 30% wider for all field sizes. Compared to the edge detector, the 10~90% penumbras measured using the CC13 and PFD were approximately 55% and 19% wider, respectively. The full width at half maximum (FWHM) of the edge detector was close to the real field size, while the other two detectors measured values that were 8~10% greater for all field sizes. Percentage depth doses measured by the three detectors corresponded to each other for small beams. Based on the results, we consider the edge detector as an appropriate small-beam detector, while CC13 and PFD can lead to some errors when used for small beam fields under $4{\times}4\;cm^2$.

  • PDF

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF

Rectal Complication Following Radical Radiotherapy in Carcinoma of the Uterine Cervix (자궁경부암에서 근치적 방사선치료 후의 직장 합병증)

  • Kim Won-Dong;Park Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.44-50
    • /
    • 2006
  • Puroose: This study evaluated the late rectal complications in cervix cancer patients following treatment with external beam radiotherapy (EBRT) and high dose rate intracavitary radiation (HDR ICR). The factors affecting the risk of developing late rectal complications and its incidence were analyzed and discussed. Materials and Methods: The records of 105 patients with cervix cancer who were treated with radical radiotherapy using HDR ICR between July, 1995 and December, 2001 were retrospectively reviewed. The median dose of EBRT was 50.4Gy $(41.4{\sim}56.4 Gy)$ with a daily fraction size of 1.8Gy. A total of $5{\sim}7$ (median: 6) fractions of HDR ICR were given twice weekly with a fraction size of $4{\sim}5 Gy$ (median: 4Gy) to A point using an Ir (Iridium)-192 source. The median dose of ICR was 24 Gy $(20{\sim}35 Gy)$. During HDR ICR, the rectal dose was measured in vivo by a semiconductor dosimeter. The median follow-up period was 32 months, ranging from 5 to 84 months. Results: Of the 105 patients, 12 patients (11%) developed late rectal complications: 7 patients with grade 1 or 2, 4 patients with grade 3 and 1 patient with grade 4. Rectal bleeding was the most frequent chief complaint. The complications usually began to occur $5{\sim}32$ (median: 12) months after the completion of radiotherapy. Multivariate analysis revealed that the measured cumulative rectal BED over 115 Gy3 (Deq over 69 Gy) and the depth (D) of a 5 Gy isodose volume more than 50 mm were the independent predictors for late rectal complications. Conclusion: With evaluating the cumulative rectal BED and the depth of a 5 Gy isodose volume as predictors, we can individualize treatment planning to reduce the probability of late rectal complications.

Influence of Total Laryngectomy on Spinal Cord Dose in Advanced Laryngeal Cancers (진행된 후두암 환자에서 후두전절제술에 의한 척수선량 변화)

  • Kim, Jae-Cheol;Kim, Sung-Hwan;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.14 no.2
    • /
    • pp.167-173
    • /
    • 1996
  • Purpose : This analysis was to evaluate the radiation dose around a tracheostoma and spinal cord in the case of advanced laryngeal cancers in which a total laryngectomy was done before radiotherapy. Materials and Methods : The radiation dose around a tracheostoma and spinal cord was measured by thermoluminescence and film dosimetry in the phantom, Radiotherapy treatment planning was done in 12 cases of advanced laryngeal cancer and compared with the measured dose in the phantom. Results : Mean spinal cord doses in the phantom by thermoluminescence dosimetry were $86.4\%$ (with a tracheostoma), $80.1\%$ (without a tracheostoma), and the difference was $6.3\%$. Mean spinal cord doses in the phantom by film dosimetry were $84.7\%$ (with a tracheostoma), $79.0\%$ (without a tracheostoma). and the difference were $5.7\%$. Calculated spinal cord doses in the phantom were $84.0\%$ (with a tracheostoma), $78.0\%$ (without a tracheostoma), and the difference was $6.0\%$. Mean calculated spinal cord doses in 12 patients were $83.1\%$ (with a tracheostoma), $76.9\%$ (without a tracheostoma). and the difference was $6.2\%$. Measured dose of lateral and posterior wall of the tracheostoma by film was low (depth of maximum dose = 12 mm). Conclusion : In the treatment planning of the advanced laryngeal cancers, the radiation dose of the tracheostoma and spinal cord should be evaluated and be followed by an appropriate management such as a bouls or a brachytherapy boost if the dose around the tracheostoma is low.

  • PDF

Development of Target-Controlled Infusion system in Plasma Concentration. PART2: Design and Evaluation (혈중 목표 농도 자동 조절기(TCI) 개발 PART2: 시스템 구현 및 평가)

  • 안재목
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • Based on the 4-compartmental pharmacokinetic model developed in PART1, target-controlled infusion(TCI) pump system was designed and evaluated. The TCI system consists of digital board including microcontroller and digital signal process(DSP), analog board, motor-driven actuator, user friendly interface, power management and controller. It provides two modes according to the drugs: plasma target concentration and effect target concentration. Anaesthetist controls the depth of anaesthesia for patients by adjusting the required concentration to maintain both plasma and effect site in drug concentration. The data estimated in DSP include infusion rate, initial load dose, and rotation number of motor encoder. During TCI operation, plasma concentration. effect site concentration, awaken concentration, context-sensitive decrement time and system error information are displayed in real time. Li-ion battery guarantees above 2 hours without power line failure. For high reliability of the system, two microprocessors were used to perform independent functions for both pharmacokinetic algorithm and motor control strategy.

Study on Energy Distribution of the 6 MeV Electron Beam using Gaussian Approximation (가우시안 근사를 이용한 6 MeV 전자선의 에너지분포에 관한 연구)

  • Lee, Jeong-Ok;Kim, Seung-Kon
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.53-56
    • /
    • 1999
  • A Gaussian distribution was parametrized for the initial distribution of the electron beam emitted from a 6MeV medical linear accelerator. A percent depth dose was measured in a water phantom and the corresponding Monte Carlo calculations were performed starting from a Gaussian distribution for a range of standard deviations, ${\sigma}=0.1$, 0.15, 0.2, 0.25, and 0.3 with being the mean value for the Incident beam energy. When measurement and calculation were compared, the calculation with the Gaussian distribution for ${\sigma}=0.25$ turned out to agree best with the measurement. The results from the present work can be utilized as input energy data in planning an electron beam therapy with a Monte Carlo calculation.

  • PDF

General Pharmacology of Aspalatone (Aspalatone의 일반약리작용)

  • 이은방;조성익;천선아;장혜옥
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • Aspalatone [3-(2-methyl-4proponyl)]-2-acetyloxybenzoate, CAS 147249-33-0) is a compound having an antithrombotic action. General pharmacological properties of aspalatone were studied. Aspalatone had no effect on central nervous system and no anticonvulsant effect up to 1200 mg/kg p.o. However, the compound has hypothermic and analgesic effect. When administered intravenously in rabbits, aspalatone did not affect blood pressure, heat rate and respiration rate and depth, and it did not inhibit transient hypotensive effect of acetylcholine. The compound did not affect isolated guinea-pig ileum and tracheal strip at a concentration of 1${\times}$$10^{-4}$, and did not inhibit histamine-induced contraction of guinea-pig ileum. It also did not affect isolated rat stomach fundus and estrogenated rat uterus at 1${\times}$$10^{-4}$, and did not inhibit contraction produced by acetylcholine or oxytocin. The pupil size and intestinal propulsion were not influenced at a large dose of was shown. The compound showed a slight increase in urine volume and led to decreased excretion of potassium in urine of rats. The results suggest that aspalatone may have no considerable adverse effects in general pharmacological aspect.

  • PDF