• Title/Summary/Keyword: depth dose

Search Result 510, Processing Time 0.03 seconds

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

Identification of an effective and safe bolus dose and lockout time for patient-controlled sedation (PCS) using dexmedetomidine in dental treatments: a randomized clinical trial

  • Seung-Hyun Rhee;Young-Seok Kweon;Dong-Ok Won;Seong-Whan Lee;Kwang-Suk Seo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.1
    • /
    • pp.19-35
    • /
    • 2024
  • Background: This study investigated a safe and effective bolus dose and lockout time for patient-controlled sedation (PCS) with dexmedetomidine for dental treatments. The depth of sedation, vital signs, and patient satisfaction were investigated to demonstrate safety. Methods: Thirty patients requiring dental scaling were enrolled and randomly divided into three groups based on bolus doses and lockout times: group 1 (low dose group, bolus dose 0.05 ㎍/kg, 1-minute lockout time), group 2 (middle dose group, 0.1 ㎍/kg, 1-minute), and group 3 (high dose group, 0.2 ㎍/kg, 3-minute) (n = 10 each). ECG, pulse, oxygen saturation, blood pressure, end-tidal CO2, respiratory rate, and bispectral index scores (BIS) were measured and recorded. The study was conducted in two stages: the first involved sedation without dental treatment and the second included sedation with dental scaling. Patients were instructed to press the drug demand button every 10 s, and the process of falling asleep and waking up was repeated 1-5 times. In the second stage, during dental scaling, patients were instructed to press the drug demand button. Loss of responsiveness (LOR) was defined as failure to respond to auditory stimuli six times, determining sleep onset. Patient and dentist satisfaction were assessed before and after experimentation. Results: Thirty patients (22 males) participated in the study. Scaling was performed in 29 patients after excluding one who experienced dizziness during the first stage. The average number of drug administrations until first LOR was significantly lower in group 3 (2.8 times) than groups 1 and 2 (8.0 and 6.5 times, respectively). The time taken to reach the LOR showed no difference between groups. During the second stage, the average time required to reach the LOR during scaling was 583.4 seconds. The effect site concentrations (Ce) was significantly lower in group 1 than groups 2 and 3. In the participant survey on PCS, 8/10 in group 3 reported partial memory loss, whereas 17/20 in groups 1 and 2 recalled the procedure fully or partially. Conclusion: PCS with dexmedetomidine can provide a rapid onset of sedation, safe vital sign management, and minimal side effects, thus facilitating smooth dental sedation.

Measurement of relative dose irradiated from a Co-60 source using a scintillating fiber-optic dosimeter (광섬유 방사선량계를 이용한 Co-60 방사선원으로부터 조사되는 상대선량측정)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Shin, Sang-Hun;Park, Byung-Gi;Kim, Sin
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • In this study, we have fabricated a scintillating fiber-optic dosimeter for a radiotherapy dosimetry. And ${\gamma}$-rays generated by a Co-60 are measured using a scintillating fiber-optic dosimeter and percent depth dose curves are obtained according to the different depths of solid water phantoms. Also, Cerenkov radiations generated by primary or secondary electrons are measured at different depths of water phantom using a background optical fiber.

Clinical Result of Combined Radiotherapy and Hyperthermia Induced by 915 MHz Microwave and Ultrasound in Locally Advanced Malignant Tumors of Head and Neck (915 MHz 극초단파 및 초음파를 이용한 온열치료와 방사선치료 병합치료에 의한 두경부암의 치료성적)

  • Koh Kyoung-Hwan;Park Young-Hwan;Cho Chul-Koo;Yoo Seong-Yul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.6 no.1
    • /
    • pp.40-45
    • /
    • 1990
  • Thirty five lesions of 35 patients with locally advanced malignant tumors of head and neck were received thermoradiotherapy with ultrasound and/or 915 MHz microwave. Most of all patients were failed with previous conventional therapeutic trial. Hyperthermia had been done immediately after radiotherapy, twice a week, $43^{\circ}C$ for one hour and radiotherapy had been done 5 fractions per week with a fraction size of 2 Gy up to total 30 to 60 Gy. Conclusions are as follows; 1) Total response rate (CR+PR) of thermoradiotherapy with microwave and ultrasound was 80%. 2) Tumor depth, minimum temperature of tumor center, number of heat fraction and irradiation dose were statistically significant factors affecting response. 3) Hyperthermia with microwave and ultrasound can be used efficiently to control locally advanced malignant tumors in head and neck whether previously received near tolerance dose of radiotherapy or not.

  • PDF

Monte Carlo Simulation for Electron Contamination of Photon Beam (치료용 광자선의 전자오염에 대한 몬테카를로 시뮬레이션)

  • Chung, Kap-Soo;Ko, Shin-Kwan;Yang, Han-Joon;Han, Chang-Yul
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.47-51
    • /
    • 1999
  • We calculated the energy distribution and the percentage depth-dose at 10 cm in a $10{\times}10\;cm^2$ with a photon beam at SSD of 100 cm by using a Monte Carlo Simulation. PDD is used as a beam-quality specifier for radiotherapy beams. It is better than the commonly used values of TPR or nominal accelerating potential. The presence of electron contamination affects the measurement of PDD, but can be removed by the use of a 0.1 cm lead filter. It reduces surface dose from contaminant electrons from the accelerator by more than 90% for radiotherapy beams. The filter performs best when it is placed immediately below the head. An electron-contamination correction factor is introduced to correct for electron contamination from the filter and air. It converts PDD which includes the electron contamination with the filter in place into PDD for the photons in the filtered beam. The correction factor can be used to determine stopping-power ratio. Calculations show that the values of water-to-air slopping power ratio in the unfiltered beam are related to PDD.

  • PDF

AN ELECTRON MICROSCOPIC STUDY OF THE IRRADIATION EFFECTS ON THE RAT PAROTID INTERCALATED DUCT CELLS (방사선조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구)

  • Choi Won Jai;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 1988
  • This study was designed to investigate the effects of irradiation on the salivary ductal cells, especially on the intercalated ductal cells of the rat parotid glands. For this study, 36 Sprague-Dawley strain rats were irradiated on the head and neck region with absorbed dose of 15Gy by Co-60 teletherapy unit, Picker's model 4M60. The conditions irradiated were that field size, SSD, dose rate and depth were 12×5㎝m, 50㎝, 222 Gy/min. and 1㎝. respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12 hours and 1, 3, 7 days after the irradiation and the changes of the irradiated intercalated duct cells of the parotid glands were examined under the light and electron microscope. The results were as follows: 1. Under the light and electron microscope, the nucleus, mitochondria and secretory granules showed severe changes in the early stage after irradiation and the most severe cellular de- generations were observed 2 hours after irradiation, but the repair processes began from 6 hours after irradiation. 2. Under the electron microscope, loss of the nuclear membranes, derrangement of the chromosomes, swelling and destruction of the secretory granules, and widening of the intercellular spaces were observed after irradiation. 3. Under the light microscope, atrophy and irregular proliferation of the ductal cells, cuboidal metaplasia, hyperchromatism, and the construction or obstruction of the lumen were observed after irradiation.

  • PDF

Clinical Applications of Microwave and Ultrasound in Hyperthermia: Preliminary Results (극초단파와 초음파온열치료에 의한 각종암의 임상치료)

  • Koh Kyoung Hwan;Park Young Hwan;Cho Chul Koo;Yoo Seong Yul
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.75-80
    • /
    • 1988
  • Twenty seven lesions of 25 patients with locally advanced malignant tumors were treated with combined hyperthermia introduced by microwave and ultrasound and radiotherapy. Most of all patients were failed with previous conventional therapeutic trial. Hyperthermia had been done immediately after radiotherapy, twice a week, $43^{\circ}C$ for one hour and radiotherapy had been done 5 fractions per week with fraction size of 2Gy upto 30 to 60Gy. Conclusions are as follows. 1. Total response rate (PR+PR) to thermoradiotherapy with microwave and ultrasound was $81\%$. 2. Tumor depth, minimum temperature of tumor center, number of heat fraction and radiation dose were statistically significant factors affecting response. 3. Hyperthermia with microwave and ultrasound can be used efficiently to control locally advanced malignant disease whether previously received near tolerance dose of radiotherapy or not.

  • PDF

Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX (MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • The electron energy spectra for 6 MeV electron beam were calculated using a MCNPX code. The head of the linear accelerator (ML6M; Mitsubishi, Japan) was modelled for this study. The energy spectrum of the initial electron beam was assumed to be Gaussian and the mean energy was determined by evaluating the measured and calculated values of $R_{50}$ and dose profiles in air. The energy distributions for electrons and photons at the interested points in the head of the linear accelerator were calculated by appling the Initial beam parameters. The effect of contaminant photons on depth dose curves were estimated by the photon energy spectra at the end of the applicator.

  • PDF