• Title/Summary/Keyword: depth control

Search Result 2,361, Processing Time 0.037 seconds

Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200 (PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증)

  • Park, Sung-kook;Lee, Phil-yeop;Park, Sangwoong;Kwon, Soon T.;Jung, Hunsang;Park, Min-su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.

A study on the periodontal status of second molar adjacent third molar (제 3대구치와 인접한 제 2대구치의 치주상태에 대한 고찰)

  • Lee, Hae-Doo;Hong, Ki-Seok;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.489-502
    • /
    • 2006
  • The purpose of this study was to determine the relationship between the third molar and periodontal status of the adjacent second molar. Fifty patients who had four maxillary and mandibular second molars were consecutively selected for the study subjects. The subjects provided a total of 200 molars, i. e., 100 maxillary and 100 mandibular molars, and classified the groups as follows; third molars that are normally erupted are control group, that are impacted are test 1 group, that are simply extracted are test 2 group, that are surgically extracted are test 3 group. Probing depth, plaque index, gingival index and mobility were measured. The results were as follows. 1. In mesial probing depth, there was no significantly difference. In distal probing depth, there was a significantly difference between control group and test 1 & 3 group in maxilla and between control & test 2 group and test 1& 3 group in mandible(p<0.05). 2. In buccal probing depth, there was a significantly difference between test 2 group and test 3 group in mandible. In lingual probing depth, there was a significantly difference between control group and test 1 & 3 group in mandible(p<0.05). 3. In plaque index, there was a significantly difference between test 1 group and test 2 group in maxilla, between test 1 group and control & test 2 group in mandible(p<0.05). 4. In gingival index, there was a significantly difference between control group and test 1 & 3 group in mandible. In mobility, there was no significantly difference(p<0.05). As a result of this study, the second molars adjacent to the third molars that are impacted or surgically extracted had poor prognosis, so impacted third molars should be extracted in early time and the second molars are actively treated for periodontal health.

Obstacle Detection for Generating the Motion of Humanoid Robot (휴머노이드 로봇의 움직임 생성을 위한 장애물 인식방법)

  • Park, Chan-Soo;Kim, Doik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1115-1121
    • /
    • 2012
  • This paper proposes a method to extract accurate plane of an object in unstructured environment for a humanoid robot by using a laser scanner. By panning and tilting 2D laser scanner installed on the head of a humanoid robot, 3D depth map of unstructured environment is generated. After generating the 3D depth map around a robot, the proposed plane extraction method is applied to the 3D depth map. By using the hierarchical clustering method, points on the same plane are extracted from the point cloud in the 3D depth map. After segmenting the plane from the point cloud, dimensions of the planes are calculated. The accuracy of the extracted plane is evaluated with experimental results, which show the effectiveness of the proposed method to extract planes around a humanoid robot in unstructured environment.

Depth Estimation for Image-based Visual Servoing of an Under-actuated System (Under-actuated 시스템에서의 이미지 서보잉을 위한 깊이 추정 기법)

  • Lee, Dae-Won;Kim, Jin-Ho;Kim, H.-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • A simple and accurate depth estimation algorithm for an IBVS (Image-Based Visual Servoing) is presented. Specifically, this algorithm is useful for under-actuated systems such as visual-guided quadrotor UAVs (Unmanned Aerial Vehicles). Since the image of a marker changes with changing pitch and roll angles of quadrotor, it is difficult to estimate depth. The proposed algorithm compensates a shape of the marker, so that the system acquire more accurate depth information without complicated processes. Also, the roll and pitch channels are decoupled so that the IBVS algorithm can be used in an under-actuated quadrotor system.

Optimal Depth Calibration for KinectTM Sensors via an Experimental Design Method (실험 계획법에 기반한 키넥트 센서의 최적 깊이 캘리브레이션 방법)

  • Park, Jae-Han;Bae, Ji-Hum;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1003-1007
    • /
    • 2015
  • Depth calibration is a procedure for finding the conversion function that maps disparity data from a depth-sensing camera to actual distance information. In this paper, we present an optimal depth calibration method for Kinect$^{TM}$ sensors based on an experimental design and convex optimization. The proposed method, which utilizes multiple measurements from only two points, suggests a simplified calibration procedure. The confidence ellipsoids obtained from a series of simulations confirm that a simpler procedure produces a more reliable calibration function.

Real time implementation of the auto depth control system for a submerged body (수중운동체 자동심도제어 시스템의 실시간 구현)

  • 이동익;조현진;최중락;이동권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.633-636
    • /
    • 1991
  • This paper describes the auto depth control system for underwater vehicle that can be used for both near surface and deeply submerged depthkeeping operations. This controller uses the fuzzy control algorithm and is implemented on the 16 bit microprocessor 8086 and coprocessor 8087. For verifying this system design, the digital simulator using PC-386 based T800 transputer is proto-totyped and the real time simulations show us satisfactory results.

  • PDF

Controller design for depth control of vehicle under seawater (수중운동체의 심도제어를 위한 제어기 설계)

  • 이만형;박경철;곽한우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.516-521
    • /
    • 1993
  • In order to hold a underwater vehicle at a depth, we can modulate buoyancy that acts on the underwater vehicle. In this research, by using a ballon, we was able to generate buoyancy that could control depth in which vehicle was operate. And in order to control flux of air that was flowed in balloon, we used solenoid valve, relief valve and so on. We derived differential equations of volume of balloon, pressure of inside of balloon, dynamic of underwater vehicle, and air flux for the simulation and linearized these differential equation. So we designed LQG/LTR controller, and applied the controller to nonlinear system. Through the simulation, we compares the nonlinear system with the linear system and investigated the operation of solenoid valve.

  • PDF

Measure Ar marker distance using USB camera (Usb 카메라를 이용하여 Ar Marker 거리 측정)

  • Lee, Seung-Jin;Kim, Sang-Hoon;Baek, Ji-Hoon;Oh, Hyeon-Tack
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.534-536
    • /
    • 2018
  • 본 논문은 Depth 카메라보다 가격이 저렴한 USB 카메라를 이용하여 Marker 인식을 하였으며 또한 Marker의 크기에 따른 거리 측정을 하였다. 이를 통해 Manipulator를 제어하는데 있어 부피가 큰 Depth 카메라를 이용하지 않고 부피가 작은 USB 카메라를 이용하여 제어하는데 용이함을 Simulation으로 확인을 하였다. Depth 카메라처럼 영상 속에 깊이를 통해 거리 측정을 하는 것이 아닌 Marker의 크기에 따른 거리 측정을 하였다.

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.