• Title/Summary/Keyword: depressurization

Search Result 114, Processing Time 0.048 seconds

The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants (복사열전달이 고체 추진제의 동적소화에 미치는 영향)

  • Jeong, Ho Geol;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.72-79
    • /
    • 2003
  • A numerical calculation was conducted to estimate and to elucidate the role of the radiative heat flux from metal particles(Al, $Al_2O_3$) on the dynamic extinction of solid propellant rocket where the rapid depressurization took place. Anon-linear flame modeling implemented by the residence time modeling for metalized propellant was adopted to evaluate conductive heat flux to the propellant surface. The radiative heat feed back was calculated with the aid of a modified comvustion-flow model as well. The calculation results with the propellant of AP:Al:CTPB=76:10:14 had revealed that the radiative heat flux is approximately 5~6% of total flux at the critical depressurization rate regardless of chamber geometry (open or confined chamber). It was also found that the dynamic extinction in open geometry could be predicted at the depressurization rate about 45% larger with radiative heat feedback than without radiation. Thus, it should be claimed that even a small amount of radiative flux 5~6% could produce a big error in predicting the critical depressurization rate of the metalized propellant combustion.

Numerical Study on the Production of Methane Hydrate by Depressurization Method (감압법을 이용한 메탄하이드레이트 생산에 대한 수치적 연구)

  • Kim, Jin-Hong;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.519-523
    • /
    • 2007
  • Gas(or methane) hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose a large variety of guest gas molecules. The natural gas hydrate crystal may exist at low temperature above the normal freezing point of water and high pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the earth and many production schemes are being studied. In the present investigation, depressurization method was considered to predict the production of gas and the simulation of the two phase flow - gas and water - in porous media is being carried out. The simulation show about the fluid flow in porous media have a variety of applications in industry. Results provide the appearance of gas and water production, the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pressure front.

  • PDF

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.

CFD Simulation of Combustion and Extinguishment of Solid Propellants by Fast Depressurization (고체 추진제의 연소 및 빠른 감압에 의한 소화 모델 CFD 모사)

  • Lee, Gunhee;Jeon, Rakyoung;Jung, Minyoung;Shim, Hongmin;Oh, Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2019
  • In this study, an extinguishment model of a three-dimensional solid propellant rocket was developed by combustion and fast depressurization to control the thrust of a solid rocket. Computational fluid dynamics simulation was carried out to ascertain the change in flow patterns in the combustion chamber and the extinguishment process by using a pintle. An ammonium perchloride was used as the target propellant and the dynamic behavior of its major parameters such as temperature, pressure, and burning rate was predicted using the combustion model. The dynamic behavior of the combustion chamber was confirmed by fast depressurization from an initial pressure of 7 MPa to a final pressure of 2.5 MPa at a depressurization rate of approximately -912 MPa/s.

Systems Engineering Approach to Reengineering of YGN 3&4 Safety Depressurization System Retrofit Design (영광3,4호기 안전감압계통 추가설비 설계최적화를 위한 시스템엔지니어링 적용연구)

  • Choi, Mun Won;Kim, Kyu Wan;Han, Ki In
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this paper is to present the results of reengineering of the YGN 3&4 (Yonggwang Nuclear Power Plant, Units 3&4) SDS (Safety Depressurization System) retrofit design and to make recommendations for the improvement in design and design procedure implementing the Systems Engineering (SE) process. YGN 3&4 is a basic model for OPR1000 (the Korean standard 1000 MWe plant). The basic model, herein, represents the reference plant for the OPR1000 development. In the middle of the YGN 3&4 construction, the Korean Nuclear Regulatory Body requested a retrofit of this plant with a means to rapidly depressurize the plant in conformance with a severe accident mitigation requirement. For the reengineering of the SDS in YGN 3&4, V-model and functional and physical architectures have been developed. A SE decision making method has been used for the selection of SDS valves. Finally, recommendations have been made to improve OPR1000 design for the improved operation and enhanced safety.

ROSA/LSTF Test and RELAP5 Analyses on PWR Cold Leg Small-Break LOCA with Accident Management Measure and PKL Counterpart Test

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.928-940
    • /
    • 2017
  • An experiment using the $Prim{\ddot{a}}rkreisl{\ddot{a}}ufe$ Versuchsanlage (PKL) was performed for the OECD/NEA PKL-3 Project as a counterpart to a previous test with the large-scale test facility (LSTF) on a cold leg smallbreak loss-of-coolant accident with an accident management (AM) measure in a pressurized water reactor. Concerning the AM measure, the rate of steam generator (SG) secondary-side depressurization was controlled to achieve a primary depressurization rate of 200 K/h as a common test condition; however, the onset timings of the SG depressurization were different from each other. In both tests, rapid recovery started in the core collapsed liquid level after loop seal clearing, which caused whole core quench. Some discrepancies appeared between the LSTF and PKL test results for the core collapsed liquid level, the cladding surface temperature, and the primary pressure. The RELAP5/MOD3.3 code predicted the overall trends of the major thermal-hydraulic responses observed in the LSTF test well, and indicated a remaining problem in the prediction of primary coolant distribution. Results of uncertainty analysis for the LSTF test clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges.

Simulation of Two Phase Flow in Porous Media After Disso of Methane Hydrates (다공성 매질 내에서 메탄 하이드레이트의 분해에 의한 2 상 유동 해석)

  • Chang, Dong-Gun;Kim, Nam-Jin;Lee, Jae-Yong;Kim, Chong-Bo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.241-246
    • /
    • 2000
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bondin create host lattice cavities that can enclose a large variety of guest gas molecules. The natural hydrate crystal may exist at low temperature above the normal freezing point of water and pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the ear many production schemes are being studied. In the present investigation, depressurization method considered to predict the production of gas and the simulation of the two phase flow - gas and - in porous media is being carried out. The simulation show about the fluid flow in porous have a variety of applications in industry. Results provide the appearance of gas and water prod the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pl front.

  • PDF

An Experimental Study on the Gas Productivity from Gas Hydrate (가스하이드레이트 생산성 분석에 관한 실험 연구)

  • Park, Seoung-Soo;Han, Jeong-Min;Kwon, Ok-Bae;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.37-41
    • /
    • 2006
  • In this study, an experimental apparatus has been designed and set up to analyze the dissociating phenomena of hydrate in porous rock. Experiments with the depressurization scheme have been carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water. From the experiments, it has been provided a determination of volume of gas produced and the progress of the dissociation front, as a function of time when hydrate is depressurized. Also, it has been investigated the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production

  • PDF