• Title/Summary/Keyword: deposition rate

Search Result 1,889, Processing Time 0.04 seconds

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF

The Electrical Characteristics of Pentacene Thin-Film for the active layer of Organic TFT deposited at the Various Evaporation conditions and the Annealing Temperatures (증착조건 및 열처리 온도에 따른 유기 TFT의 활성층용 펜타센 박막의 전기적 특성 연구)

  • 구본원;정민경;김도현;송정근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.80-83
    • /
    • 2000
  • In this work we deposited Pentacene thin film by OMBD at the various substrate temperatures, deposition rate and the various annealing temperatures for the fabrication of organic TFT and investigated the electrical and film surface characteristics such as sheet resistance, contact resistance and conductance Film thickness were measured by $\alpha$-step and the sheet resistance, contact resistance and conductance were extracted from the relation between the distance of the contacts and the resistance. During the film deposition the substrate temperature was held at 3$0^{\circ}C$, 4$0^{\circ}C$, 5$0^{\circ}C$, 6$0^{\circ}C$, 8$0^{\circ}C$ and 10$0^{\circ}C$, respectively. After the film deposition, Au contact was deposited by thermal evaporation. For the effect of annealing, the thin film was annealed in the nitrogen environment at 10$0^{\circ}C$ and 14$0^{\circ}C$ for 10 seconds, respectively. Film surface characteristics at the vatious substrate temperatures were measured by AFM. The crystallization of thin film was improved as the substrate temperatures were increased and the maximum gram size was 4${\mu}{\textrm}{m}$. The conductivity of thin film was found to be 7.40 $\times$10$^{-7}$ ~ 7.78$\times$10$^{-6}$ S/cm and the minimum contact resistance was 2.5324 ㏁.

  • PDF

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Chromaticity(b*), Sheet Resistance and Transmittance of SiO2-ITO Thin Films Deposited on PET Film by Using Roll-to-Roll Sputter System (롤투롤시스템을 이용하여 PET 필름위에 제조된 SiO2-ITO 박막의 색도(b*), 면저항과 투과도 연구)

  • Park, Mi-Young;Kang, Bo-Gab;Kim, Jung-Soo;Kim, Hye-Young;Kim, Hu-Sik;Lim, Woo-Taik;Choi, Sik-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.255-262
    • /
    • 2011
  • This paper has relatively high technical standard and experimental skill. The fabrication of TCO film with high transparency, low resistance and low chromaticity require exact control of several competing factors. This paper has resolved these problems reasonably well, thus recommended for publication. Indium tin oxide(ITO) thin films were by D.C. magnetron roll-to-roll sputter system utilizing ITO and $SiO_2$ targets of ITO and $SiO_2$. In this experiment, the effect of D.C. power, winding speed, and oxygen flow rate on electrical and optical properties of ITO thin films were investigated from the view point of sheet resistance, transmittance, and chromaticity($b^*$). The deposition of $SiO_2$ was performed with RF power of 400W, Ar gas of 50 sccm and the deposition of ITO, DC power of 600W, Ar gas of 50 sccm, $O^2$ gas of 0.2 sccm, and winding speed of 0.56m/min. High quality ITO thin films without $SiO_2$ layer had chromaticity of 2.87, sheet resistivity of 400 ohm/square, and transmittance of 88% and $SiO_2$-doped ITO Thin film with chromaticity of 2.01, sheet resistivity of 709 ohm/square, and transmittance of more than 90% were obtained. As a result, $SiO_2$ was coated on PET before deposition of ITO, their chromaticity($b^*$) and transmittance were better than previous results of ITO films. These results show that coating of $SiO_2$ induced arising chromaticity($b^*$) and transmittance. If the thickness of $SiO_2$ is controlled, sheet resistance value of ITO film will be expected to be better for touch screen. A four point probe and spectrophotometer are used to investigate the properties of ITO thin films.

The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper (전기분해 조건에 따른 구리 회수 변화와 음극회수-구리분말에 대한 광물학적 특성)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.183-195
    • /
    • 2014
  • In order to study the mineralogical characteristics of a cathodic deposition-metallic powder, electrowinning experiments were carrier out on different electrolytic solutions at varying electric distances and electric currents. Under the same experimental conditions, Cu recovery was obtained much more effectively using a sodium chloride electrolyte than with a sulfuric acid electrolyte. In XRD analysis, copper ($Cu^0$), chalcanthite and cuprite were identified in the sulfuric acid electrolyte, while copper, nantokite and chalcanthite were observed in the sodium chloride electrolyte. In the sodium chloride electrolyte solution, increasing the electric distance and the electric current increased the Cu recovery rate, anode weight and anodic corrosion. The results of XRD analysis with non-pulverized cathodic deposition-metallic powder showed the average copper crystallite size was increased by increasing the electric current and decreasing the electric distance. It is suggested that the mass transfer was controlled with diffusion on the boundary between the electrode and the electrolytic solution due to the formation of dendrite copper.

Face Stability Assessment of Slurry-shield Tunnels - Concentrating on Slurry Clogging Effect - (슬러리 쉴드 터널의 막장 안정성 평가 - 슬러리의 폐색효과를 중심으로 -)

  • Lee, In-Mo;Lee, Sam;Cho, Kook-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.95-107
    • /
    • 2004
  • In this paper, the rheological characteristics of slurry used fur slurry-shield tunnels were studied with emphasis on penetration characteristics. The slurry penetration was modeled by soil-filter clogging theory. The coefficient of particle deposition was suggested as an indicator of sin clogging during tunnel construction and calculated through model tests. The measured slurry weight, clogged in the base soil, was compared with the value obtained from clogging theory. Based on the testing results, a stability analysis of a tunnel face was performed to pinpoint the most influential factor affecting stability of slurry-shield tunnels. It was found that the stability of tunnel face is dependent on the ratio of infiltration velocity to the coefficient of particle deposition, and the penetration distance of slurry increases with the ratio of infiltration velocity to the coefficient of particle deposition. Since the stability of tunnel face decreases with the slurry penetration distance, it was necessary to add some additives in order to reduce the slurry penetration distance. It was found that the ground condition needs additives when the soil has the effective particle diameter$(D_{10})$ larger than 0.75mm. It was also found that the tunnel face stability due to slurry penetration is significantly affected by the tunnel advance rate.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Effect of air-contaminated TiN on the deposition characteristics of Cu film by MOCVD (공기 중에 노출된 MOCVD TiN 기판이 MOCVD Cu 증착에 미치는 효과)

  • Choe, Jeong-Hwan;Byeon, In-Jae;Yang, Hui-Jeong;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.482-488
    • /
    • 2000
  • The deposition characteristics of Cu film by MOCVD using (hfac)Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cryclooctadiene) as a precursor have been investigated in terms of substrate conditions. Two different substrates such as air-exposed TiN and non-contaminated TiN were used for the MOCVD of Cu. MOCVD of Cu on the air-exposed TiN affected the nucleation rate of Cu as well as its growth, resulting in the Cu films having poor interconnection between particles with relatively small grains. On the other hand, in-situ MOCVD of Cu led to the Cu films having a significantly improved interconnection between particles with larger grains, indicating the resistivity as low as $2.0{\mu}{\Omega}-cm$ for the films having more than 1900$\AA$ thickness. Moreover, better adhesion of Cu films to the TiN by using in-situ MOCVD has been obtained. Finally, initial coalescence mechanism of Cu was suggested in this paper in terms of different substrate conditions by observing the surface morphology of the Cu films deposited by MOCVD.

  • PDF

Silk fibroin/hyaluronic acid blend sponge accelerates the wound healing in full-thickness skin injury model of rat (전층피부창상에서 실크피브로인과 하이알론산 혼합 스폰지의 창상치유효과)

  • Kang, Seuk-Yun;Roh, Dae-Hyun;Kim, Hyun-Woo;Yoon, Seo-Yeon;Kwon, Young-Bae;Kweon, HaeYong;Lee, Kwang-Gill;Park, Young-Hwan;Lee, Jang-Hern
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.305-313
    • /
    • 2006
  • The primary goal of the wound healing is rapid wound closure. Recent advances in cellular and molecular biology have greatly expanded our understanding of the biologic processes involved in wound repair and tissue regeneration. This study was conducted to develop a new sponge type of biomaterial to be used for either wound dressing or scaffold for tissue engineering. We designed to make a comparative study of the wound healing effect of silk fibroin/hyaluronic acid (SF/HA) blend sponge in full-thickness dermal injury model of rat. Two full-thickness excisions were made on the back of the experimental animals. The excised wound was covered with either the silk fibroin (SF), hyaluronic acid (HA) or SF/HA (7 : 3 or 5 : 5 ratio) blend sponge. On the postoperative days of 3, 7, 10 and 14, the wound area was calculated by image analysis software. Simultaneously, the tissues were stained with Hematoxylin-Eosin and Masson's trichrome methods to measure the area of regenerated epithelium and collagen deposition. In addition, we evaluated the degree of the epithelial cell proliferation using immunohistochemistry for proliferating cell nuclear antigen (PCNA). We found that the half healing time ($HT_{50}$) of SF/HA blend sponge treated groups were significantly decreased as compared with either those of SF or HA treatment group. Furthermore, SF/HA blend sponges significantly increased the size of epithelialization and collagen deposition as well as the number of PCNA positive cells on epidermal basement membrane as compared with those of control treatment. Especially, the 5 : 5 ratio group of SF/HA among all treatment groups was most effective on wound healing rate and histological studies. These results suggest that SF/HA blend sponges could accelerate the wound healing process through the increase of epithelialization, collagen deposition and basal cell proliferation in full thickness skin injury.