• 제목/요약/키워드: deposition model

검색결과 759건 처리시간 0.027초

WEPP 모형을 이용한 경사지 토양유실량 추정 (Estimating of Soil Loss from Hillslope Using WEPP Model)

  • 손정호;박승우;강민구
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.45-50
    • /
    • 2001
  • The purpose of this study was to estimate of soil loss form hillslope using WEPP(Water Erosion Prediction Project) model. WEPP model was developed for predicting soil erosion and deposition, fundamentally based on soil erosion prediction technology. The model for predicting sediment yields from single storms was applied to a tested watershed. Surface runoff is calculated by kinematic wave equation and infiltration is based on the Green and Ampt equation. Governing equations for sediment continuity, detachment, deposition, shear stress in rills, and transport capacity are presented. Tested watershed has an area of 0.6ha, where the runoff and sediment data were collected. The relative error between predicted and measured runoff was $-16.6{\sim}2.2%$, peak runoff was $-15.6{\sim}2.2%$ and soil loss was $-23.9{\sim}356.5%$.

  • PDF

플라즈마 증착 장비 센서 정보의 신경망 시계열 모델링 (Neural Network Time Series Modeling of Sensor Information of Plasma Deposition Equipment)

  • 김유석;김병환;권기청;한정훈;손종원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.102-104
    • /
    • 2006
  • Auto-Correlated time series (ATS) model was constructed by using the backpropagation neural network. The performance of ATS model was evaluated with sensor information collected from a large volume, industrial plasma-enhanced chemical vapor deposition system. A total of 18 sensor information were collected. The effect of inclusion of past and future information were examined. For all but three sensor information with a large data variance demonstrated a prediction error less than 4%. By integrating ATS model into equipment software, process quality can be more stringently monitored while improving device throughput.

  • PDF

Simulation of Debris Flow Deposit in Mt. Umyeon

  • Won, Sangyeon;Kim, Gihong
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.507-516
    • /
    • 2015
  • Debris flow is a representative natural disaster in Korea and occurs frequently every year. Recently, it has caused considerable damage to property and considerable loss of life in both mountainous and urban regions. Therefore, It is necessary to estimate the scope of damage for a large area in order to predict the debris flow. A response model such as the random walk model(RWM) can be used as a useful tool instead of a physics-based numerical model. RWM is a probability model that simplifies both debris flows and sedimentation characteristics as a factor of slopes for a subjective site and represents a relatively simple calculation method compared to other debris flow behavior calculation models. Although RWM can be used to analyzing and predicting the scope of damage caused by a debris flow, input variables for terrain conditions are yet to be determined. In this study, optimal input variables were estimated using DEM generated from the Aerial Photograph and LiDAR data of Mt. Umyeon, Seoul, where a large-scale debris flow occurred in 2011. Further, the deposition volume resulting from the debris flow was predicted using the input variables for a specific area in which the deposition volume could not be calculated because of work restoration and the passage of time even though a debris flow occurred there. The accuracy of the model was verified by comparing the result of predicting the deposition volume in the debris flow with the result obtained from a debris flow behavior analysis model, Debris 2D.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

2단 튜브형 가열로 반응기에 의한 초미세 SiO2 입자의 제조 및 증착 연구 (A Study on Ultrafine SiO2 Particles Generation and Deposition by 2-Stage Tube Furnace Reactor)

  • 유수종;김교선
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.233-239
    • /
    • 1997
  • The effects of preheating the gas stream on deposition characteristics of ultrafine $SiO_2$ particles were investigated theoretically. The model equations such as mass and energy balance equations and aerosol dynamic equations were solved to predict the particle growth and deposition. The gas temperatures, $SiCl_4$ concentrations, $SiO_2$ particle volumes, $SiO_2$ particle sizes and deposition efficiencies of $SiO_2$ particles were calculated for various preheating temperatures. As the preheater setting temperature increases, the $SiO_2$ particle size distribution becomes more uniform, because the effect of $SiCl_4$ diffusion decreases.

  • PDF

플라즈마 화학 증착에서 증착압력에 따른 TiN 박막의 성장거동 (The Study on the Behavior of TiN Thin Film Growth According to Deposition Pressure in PECVD Process)

  • 이종훈;남옥현;이인우;김문일
    • 열처리공학회지
    • /
    • 제5권2호
    • /
    • pp.95-102
    • /
    • 1992
  • In this study, we tried to describe the quantitative model of TiN film structure which was deposited by PECVD process. The macro-grain growth behavior was studied at the various deposition pressures and times. As a result, It was confirmed that TiN films had the typical Zone 1 structure, and macro-columnar grains were, without reference to the deposition pressure, grown ballistic type by the growth-death competition following the equation, $Y=aX^2$, approximately obtained by regression analysis. Also, the thickness and the crystallization of TiN thin films were increased, the chlorine contents were decreased according to the decreasing of deposition pressure.

  • PDF

공정 Simulation에 의한 Laser CVD $SiO_2$막 형성 기구 규명에 관한 연구 (A Study on Deposition Mechanism of Laser CVD $SiO_2$ by Process Simulation)

  • 신상우;이상권;김태훈;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1301-1303
    • /
    • 1997
  • This study was performed to investigate the deposition mechanism of $SiO_2$ by ArF excimer Laser(193nm) CVD with $Si_2H_6$ and $N_2O$ gas mixture and evaluate Laser CVD quantitatively by modeling. In this study, new model of $SiO_2$ deposition process by Laser CVD is introduced and deposition rates are simulated by computer with the basis on this modeling. And simulation results are compared with experimental results measured at various conditions such as reaction gas ratio, chamber pressure, substrate temperature and laser beam intensity.

  • PDF

Development of droplet entrainment and deposition models for horizontal flow

  • Schimpf, Joshua Kim;Kim, Kyung Doo;Heo, Jaeseok;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.379-388
    • /
    • 2018
  • Models for the rate of atomization and deposition of droplets for stratified and annular flow in horizontal pipes are presented. The entrained fraction is the result of a balance between the rate of atomization of the liquid layer that is in contact with air and the rate of deposition of droplets. The rate of deposition is strongly affected by gravity in horizontal pipes. The gravitational settling of droplets is influenced by droplet size: heavier droplets deposit more rapidly. Model calculation and simulation results are compared with experimental data from various diameter pipes. Validation for the suggested models was performed by comparing the Safety and Performance Analysis Code for Nuclear Power Plants calculation results with the droplet experimental data obtained in various diameter horizontal pipes.

Development and Assessment of a Dynamic Fate and Transport Model for Lead in Multi-media Environment

  • Ha, Yeon-Jeong;Lee, Dong-Soo
    • Environmental Engineering Research
    • /
    • 제14권1호
    • /
    • pp.53-60
    • /
    • 2009
  • The main objective was to develop and assess a dynamic fate and transport model for lead in air, soil, sediment, water and vegetation. Daejeon was chosen as the study area for its relatively high contamination and emission levels. The model was assessed by comparing model predictions with measured concentrations in multi-media and atmospheric deposition flux. Given a lead concentration in air, the model could predict the concentrations in water and soil within a factor of five. Sensitivity analysis indicated that effective compartment volumes, rain intensity, scavenging ratio, run off, and foliar uptake were critical to accurate model prediction. Important implications include that restriction of air emission may be necessary in the future to protect the soil quality objective as the contamination level in soil is predicted to steadily increase at the present emission level and that direct discharge of lead into the water body was insignificant as compared to atmospheric deposition fluxes. The results strongly indicated that atmospheric emission governs the quality of the whole environment. Use of the model developed in this study would provide quantitative and integrated understanding of the cross-media characteristics and assessment of the relationships of the contamination levels among the multi-media environment.

한국 환경에 적용 가능한 동적 섭식경로 모델 (KORFOOD) 개발 (Development of a Dynamic Ingestion Pathways Model(KORFOOD), Applicable to Korean Environment)

  • 황원태;김병우;이건재
    • Journal of Radiation Protection and Research
    • /
    • 제18권1호
    • /
    • pp.9-24
    • /
    • 1993
  • 원자력발전소의 사고시 방사성물질의 단기간 침적 후 오염된 음식물에 의한 영향을 평가하기 위해 한국 환경에 적용이 가능한 동적 방사능영향 평가모델이 개발되었다. KORFOOD라 불리워지는 이 모델은 오염된 음식물의 섭취에 의한 누적선량뿐만 아니라 시간에 따른 선량을 평가하며, 또한 음식물내 시간에 따른 방사능농도의 변화를 해석한다. 설식경로에 중요한3가지 핵종과 13가지 음식물이 이 모델에서 고려되었다. 방사능농도의 동적변화는 침적, 풍화와 강우, 재부유, 뿐리흡취, 전이, 토양내 이동, 식물의 노화, 동물의 토양흥취 및 배설, 동물의 사료섭취와 배설 둥과 같은 여러 효과를 고려하여 모사되었다. 평가를 위한 입력 자료로는 침적되는 방사성물질의 양, 침적시점, 평가하고자하는 핵종 및 음식물의 종류가 요구된다. 고리지역 농작물자료를 사용하여 쌀에 대해 시간에 따른 비방사능농도와 고려되는 모든 음식물의 섭취에 따른 선량이 침적시점에 따라 계산되었다. 모델결과의 타당성 검증을 위해 이 분야에서 이미 공인받고 있는 독일모델 ECOSYS-87의 결과와 비교하였다. 비교결과, KORFOOD의 예측치가 ECOSYS-87의 예측값의 10배 범위내에 있어 좋은 일치를 보여주었다.

  • PDF