• Title/Summary/Keyword: deposition model

Search Result 759, Processing Time 0.028 seconds

Addition Effect of the Deposition and Buoyancy Terms in Modeling Turbulence Diffusion of Hazardous Air Pollutants (유해 대기오염물질의 난류확산 수치모의에서 침적한과 부력항 추가에 따른 효과)

  • Won, Gyeong-Mee;Lee, Hwa-Woon;Ji, Hyo-Eun;Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • Hazardous Air Pollutants (HAPs) are characterized by being relatively heavier and denser than that of ambient air due to the various reasons such as higher molecular weight, low temperature and other complicated chemical transformations (Witlox, 1994). In an effort to investigate transport and diffusion from instantaneous emission of heavy gas, Lagrangian Particle Dispersion Model (LPDM) coupled with the RAMS output was employed. Both deposition process and buoyancy term were added on the atmospheric diffusion equations of LPDM, and the locations and concentrations of dense gas particle released from instantaneous single point source (emitting initially for 10 minutes only) were analyzed. The result overall shows that adding deposition process and buoyancy terms on the diffusion equation of LPDM has very small but detectable effect on the vertical and horizontal distribution of Lagrangian particles that especially transported for a fairly long traveling time. Also the slumping of dense gas can be found to be ignored horizontally compared to the advection by the horizontal wind suggesting that it was essential to couple the Lagrangian particle dispersion model coupled with the RAMS model in order to explain the dispersion of HAPs more accurately. However, during the initial time of instantaneous emission, buoyancy term play an important role on the vertical locations of dense particles for near surface atmosphere and around source area, indicating the importance of densities of HAPs in the beginning stage or short duration for the risk assessment of HAPs or management of heavy vapors during the explosive accidents.

Assessment of the Effect of Geographic Factors and Rainfall on Erosion and Deposition (지형학적 인자 및 강우량에 따른 침식 및 퇴적의 영향 평가)

  • Yu, Wan-Sik;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This study aims to demonstrate the relationship between various factors and soil erosion or deposition, simulated from distributed rainfall-sediment-runoff model applications. We selected area, overland flow length, local slope as catchment representative characteristics among many important geographic factors and also used the grid-based accumulated rainfall as a representative hydro-climatic factor to assess the effect of these two different types of factors on erosion and deposition. The study catchment was divided based on the Strahler's stream order method for analysis of the relationship between area and erosion or deposition. Both erosion and deposition increased linearly as the catchment area became larger. Erosion occurred widely throughout the catchment, whereas deposition was observed at the grid-cells near the channel network with short overland flow lengths and mild slopes. In addition, the relationship results between grid-based accumulated rainfall and soil erosion or deposition showed that erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall. Within the context of these results, it can be concluded that deposition is closely related with the geographic factors used in this study while erosion is significantly affected by rainfall.

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Measurement of Atmospheric Dry Deposition and Size Distribution of Particulate PCBs in 1999 at Seoul

  • Park, Seong-Suk;Shin, Hye-Joung;Yi, Seung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.35-43
    • /
    • 2006
  • Ambient particle size distributions of PCBs and their dry deposition fluxes were measured at a site in Seoul to quantify dry deposition fluxes of PCBs and size characteristics of PCBs in the air, and to estimate ambient concentrations of gaseous PCBs and dry deposition fluxes. The dry deposition plate was used to measure dry deposition fluxes of particulate mass and PCBs and a cascade impactor and rotary impactor were used to measure ambient particle size distributions for small ($D_p<9{\mu}m$) and large ($D_p>9{\mu}m$) particles, respectively. Six sample sets were collected from April to July 1999. The fluxes of particulate total PCBs (the sum of 43 congeners) ranged from 160 to $607ng\;m^{-2}day^{-1}$. The size distribution of total PCBs was bimodal with two peaks in small particle size ($D_p{\sim}0.6\;and\;6{\mu}m$, respectively) and, thus, mass concentration being dominant in small particles. The mean particulate PCBs concentration was $6.9{\mu}g$ PCBs/g. The concentrations of PCB homologues in the gas phase were estimated based on the particle/gas partition coefficient ($K_p$) with the measured values of particulate PCBs in this study and they were comparable to those observed in other previous studies. Dry deposition fluxes were estimated by calculating dry deposition velocities.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

OPTIMIZED NUMERICAL ANNULAR FLOW DRYOUT MODEL USING THE DRIFT-FLUX MODEL IN TUBE GEOMETRY

  • Chun, Ji-Han;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.387-396
    • /
    • 2008
  • Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code.

Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment (진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석)

  • Yoo, Kyung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

Estimation of Nitrogen and Sulfur Dry Deposition over the Watershed of Lake Paldang (팔당호 유역에 대한 질소와 황의 건식 침적량 추정)

  • Kim J.Y;Ghim Y. S;Won J.-G;Yoon S.-C;Woo J.-H;Cho K.-T
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.49-62
    • /
    • 2005
  • Lake Paldang is a main resource of drinking water for 20 million people in the greater Seoul area. Dry deposition amounts of nitrogen and sulfur were estimated for three typical days in each season over the watershed of Lake Paldang. Models- 3/CMAQ (Community Multiscale Air Quality) and MM5 (Mesoscale Model) were used to predict air quality and meteorology, respectively. Aerosols as well as gaseous pollutants were considered. Nitrogen was mainly deposited in the form of HNO, while most of sulfur was deposited in the form of SO$_2$. Contribution of secondary pollutants was the largest in fall since they were transported from the greater Seoul area. However, contribution of secondarily-formed particulate pollutants to the nitrogen deposition was the largest in winter because semi-volatile ammonium nitrate favors lower temperature. Annual deposition amounts of nitrogen and sulfur were 37% and 26% of their emission amounts, respectively, over the watershed of Lake Paldang. Higher value of the nitrogen deposition showed a more influence of pollutants emitted in the greater Seoul area.

Effects of Chemical Vapor Deposition Parameters on The Hardness and the Structural Characteristics of TiN Film (TiN피막의 경도 및 구조적 특성에 미치는 화학증착 조건의 영향)

  • Shin, Jong-Hoon;Lee, Seong-Rae;Baek, Young-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.106-117
    • /
    • 1987
  • The microhardness and the structural characteristics of the chemically vapor deposited TiN film on the 430 stainless steel substrate have been investigated with various deposition parameters such as the deposition time, the total flow rate, the flow rate ratio $(H_2/N_2)$, and the deposition temperature. The most important factor to affect the microhardness of the TiN film in this study was the denseness of the structure in connection with the degree of the lattice strain. The relationship between the lattice parameter changes and the grain size variation under all deposition conditions generally followed the grain boundary relaxation model. The (111) preferred orientation prevailed in the early stage of the deposition conditions, however, the (200) preferred orientation was developed in the later stage. The surface morphology at optimum conditions displayed a dense diamond shaped structure and the microhardness of the films was high (1700-2400Hv) regardless of the type of the substrates used.

  • PDF

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Hyungju Yun;Min-Seok Kim;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.517-529
    • /
    • 2023
  • The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.