• 제목/요약/키워드: deposition date

검색결과 27건 처리시간 0.02초

FDM 쾌속 조형기를 통해 만들어진 ABS 파트를 이용한 직접 정밀 주조에 대한 연구 (A Study of Using FDM/ABS Parts as Wax-Pattern Substitutes in the Investment Casting Process)

  • 최두선;신보성;김주한
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.59-67
    • /
    • 1999
  • The lead time for new products is very limited in the current manufacturing processes, therefore the Rapid Prototyping process has been introduced and generally used in the industry. Fused Deposition Manufacturing (FDM) is one of the most common methods in this field. In the FDM process, the patterns are made of Wax of ABS and ABS shows better quality of the patterns. To date, the FDM/ABS patterns are used in investment casting for making silicon moulds to produce was patterns because it is very difficult to dewax FDM/ABS directly. The aim of this paper was to propose a feasibility of using FDM/ABS parts as wax-pattern substitutes in the investment casting process. The effects of casting conditions, such as pre-heat temperature and casting temperature, are provided. Comparisons with the conventional investment casting processes using the wax-patterns under the same prototype are made. Lead-time and saving cost are discussed in using FDM/ABS parts as was-pattern substitutes compared with the products from other rapid prototype systems.

  • PDF

다층박막을 이용한 Ga-doped ZnO 투명전도막의 특성 (The Characteristics of Ga-doped ZnO Transparent Thin Films by using Multilayer)

  • 김봉석;이규일;강현일;이태용;오수영;이종환;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제20권12호
    • /
    • pp.1044-1048
    • /
    • 2007
  • With development of electronic products the demands for miniaturization and weight-lightening have increased until a recent date. Accordingly, The effort to substitute glass substrates was widely made. However, polymer substrates have weak point that substrates were damaged at high temperature. In this paper, we deposited transparent conductive film at low temperature. And we inserted Au thin film between oxide to compensate for deteriorated electrical characteristics. Ga-doped ZnO(GZO) multilayer coatings were deposited on glass substrate by DC sputtering. The optimization of deposition conditions of both AZO and Au layers were performed to obtain better electrical and optical characteristics in advance. We presumed that the properties of multilayer were affected by the deposition process of both GZO and Au layers. The best multilayer coating exhibited the resistivity of $2.72{\times}10^{-3}\;{\Omega}-cm$ and transmittance of 77 %. From these results, we can confirm a possibility of the application as transparent conductive electrodes.

Possibility of Benzene Exposure in Workers of a Semiconductor Industry Based on the Patent Resources, 1990-2010

  • Choi, Sangjun;Park, Donguk;Park, Yunkyung
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.403-415
    • /
    • 2021
  • Background: This study aimed to assess the possibility of benzene exposure in workers of a Korean semiconductor manufacturing company by reviewing the issued patents. Methods: A systematic patent search was conducted with the Google "Advanced Patent Search" engine using the keywords "semiconductor" and "benzene" combined with all of the words accessed on January 24, 2016. Results: As a result of the search, we reviewed 75 patent documents filed by a Korean semiconductor manufacturing company from 1994 to 2010. From 22 patents, we found that benzene could have been used as one of the carbon sources in chemical vapor deposition for capacitor; as diamond-like carbon for solar cell, graphene formation, or etching for transition metal thin film; and as a solvent for dielectric film, silicon oxide layer, nanomaterials, photoresist, rise for immersion lithography, electrophotography, and quantum dot ink. Conclusion: Considering the date of patent filing, it is possible that workers in the chemical vapor deposition, immersion lithography, and graphene formation processes could be exposed to benzene from 1996 to 2010.

Microstructure and Pore Size Control of Silica Membrane for Gas Separation at Elevated Temperatures

  • Lee Kew-Ho;Sea Bongkuk;Lee Dong-Wook
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.42-50
    • /
    • 2005
  • Among ceramic membranes developed to date, amorphous silica membranes are attractive for gas separation at elevated temperatures. Most of the silica membranes can be formed on a porous support by sol-gel or chemical vapor deposition (CVD) process. To improve gas permselectivity of the membrane, well-controlled pores having desired size and chemical affinity between permeates and membrane become important factors in the preparation of membranes. In this article, we review the literature and introduce our technologies on the microstructure to be solved and pore size control of silica membranes using sol-gel and CVD methods.

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • 이정규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF

MOCVD법에 의해 나노급 구조 안에 증착된 InSbTe 상변화 재료 (InSbTe phase change materials deposited in nano scaled structures by metal organic chemical vapor deposition)

  • 안준구;박경우;조현진;허성기;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.52-52
    • /
    • 2009
  • To date, chalcogenide alloy such as $Ge_2Sb_2Te_5$(GST) have not only been rigorously studied for use in Phase Change Random Access Memory(PRAM) applications, but also temperature gap to make different states is not enough to apply to device between amorphous and crystalline state. In this study, we have investigated a new system of phase change media based on the In-Sb-Te(IST) ternary alloys for PRAM. IST chalcogenide thin films were prepared in trench structure (aspect ratio 5:1 of length=500nm, width=100nm) using Tri methyl Indium $(In(CH_3)_4$), $Sb(iPr)_3$ $(Sb(C_3H_7)_3)$ and $Te(iPr)_2(Te(C_3H_7)_2)$ precursors. MOCVD process is very powerful system to deposit in ultra integrated device like 100nm scaled trench structure. And IST materials for PRAM can be grown at low deposition temperature below $200^{\circ}C$ in comparison with GST materials. Although Melting temperature of 1ST materials was $\sim 630^{\circ}C$ like GST, Crystalline temperature of them was ~$290^{\circ}C$; one of GST were $130^{\circ}C$. In-Sb-Te materials will be good candidate materials for PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Hydroalcoholic Extract of Scrophularia Striata Attenuates Hypertrophic Scar, Suppresses Collagen Synthesis, and Stimulates MMP2 and 9 Gene Expression in Rabbit Ear Model

  • Zarei, Hatam;Tamri, Pari;Asl, Sara Soleimani;Soleimani, Meysam;Moradkhani, Shirin
    • 대한약침학회지
    • /
    • 제25권3호
    • /
    • pp.258-267
    • /
    • 2022
  • Objectives: Hypertrophic scars (HSs) are caused by abnormal wound healing. To date, no standard treatment has been made available for HSs. Scrophularia striata has been reported to accelerate wound healing and has the potential to prevent HS formation. In this study, we investigated the anti-scarring effects of S. striata extract (SSE) in a rabbit ear model of scarring. Methods: In this study, New Zealand white rabbit (weight: 2.3-2.5 kg) were used. In the prevention phase of the study, three test groups received 5%, 10%, and 15% ointments of SSE in the Eucerin base, the fourth group received Eucerin, and the fifth group received no treatment. The samples were obtained on day 35 after wounding. In the treatment phase of the study, the test groups received an intralesional injection of SSE (5%, 10%, and 15%), the fourth group received an intralesional injection of triamcinolone, the fifth group received a solvent (injection vehicle), and the sixth group received no treatment. To evaluate the anti-scarring effects of SSE, the scar elevation index (SEI), epidermis thickness index (ETI), collagen deposition, and MMP2 and MMP9 gene expression were evaluated. Results: A significant reduction in SEI, ETI, and collagen deposition was noted in animals treated with SSE compared with the control groups. In addition, topical SSE stimulated MMP2 and MMP9 gene expression. Conclusion: The findings of this study demonstrate the potential for SSE in the prevention and treatment of HS. SSE could be prepared as an appropriate formulation to treat wounds and prevent abnormal scarring.

분무충돌을 이용하는 디젤연소실 설계를 위한 충돌면 분석 (Analysis of Impingement Lands to Help Diesel Combustion Chamber Using Spray Impaction)

  • 박권하
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.24-32
    • /
    • 1996
  • Most of the research of small engines to date focused on developing spark ignition engines occupied much parts. Recently the number of a small direct injection diesel engine applied in small cars has been increased and considered as a next generation power source for passenger cars because of its high efficiency. Therefore the combustion chamber becomes smaller and the fuel injection pressure goes higher, which makes fuel sprays impinged easily on the combustion chamber walls. When strong swirls are not induced, the fuel may not mix with air because of fuel deposition on the wall. As a positive way, the combustion chamber systems which is using spray wall impaction has been introduced and assessed by an experimental or a simulate manner. In these systems the raised lands are positioned in tile chamber for spray impaction in order to break up the fuel drops into much smaller and direct them into desirable direction. This study addresses to the effects of rho position and size of the raised land or glow plug to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then the chamber shapes are discussed with the characteristics and their proper position and size is proposed in any chamber volume.

  • PDF

조선 탑재용접용 대입열 수직자동용접법의 개발에 관한 연구 (A Study on the Development of High Deposition Automatic Vertical Welding of Erection Stage in Shipbuilding)

  • 박주용;최우현
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.66-73
    • /
    • 2008
  • Welding work in pre-erection or erection stage of shipbuilding construction to be carried out in flat and vertical upward position mostly and Electrogas welding(EGW) is actively applied especially for vertical butt joint of thicker steel plate recently. In this study considered how to develope and improve mechanical properties of weld metal and HAZ in high heat input welding processes such as EGW and Electroslag welding(ESW) with its welding equipment in order to extend the application range to the longitudinal members and hatch coaming parts of container ship. Some components of welding system and parameters were modified to get the faster travel speed and reduce weld heat input, and also by adding additional filler rods or tubes increase the amount of deposited weld metal. With the test get some good date can apply to actual fabrication work and recommend items to manufacture welding materials make better. Above all things it's a fruition that to prepare the possibility of application of ESW to shipbuilding construction which fill up the gap of stoppage days of more than 20 years.

Resistive Switching Properties of N and F co-doped ZnO

  • Kim, Minjae;Kang, Kyung-Mun;Wang, Yue;Chabungbam, Akendra Singh;Kim, Dong-eun;Kim, Hyung Nam;Park, Hyung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제29권2호
    • /
    • pp.53-58
    • /
    • 2022
  • One of the most promising emerging technologies for the next generation of nonvolatile memory devices based on resistive switching (RS) is the resistive random-access memory mechanism. To date, RS effects have been found in many transition metal oxides. However, no clear evidence has been reported that ZnO-based resistive transition mechanisms could be associated with strong correlation effects. Here, we investigated N, F-co-doped ZnO (NFZO), which shows bipolar RS. Conducting micro spectroscopic studies on exposed surfaces helps tracking the behavioral change in systematic electronic structural changes during low and high resistance condition of the material. The significant difference in electronic conductivity was observed to attribute to the field-induced oxygen vacancy that causes the metal-insulator Mott transition on the surface. In this study, we showed the strong correlation effects that can be explored and incorporated in the field of multifunctional oxide electrons devices.