• Title/Summary/Keyword: deposited layer

Search Result 2,397, Processing Time 0.028 seconds

Modification of Dielectric Surface in Organic Thin-Film Transistor with Organic Molecule

  • Kim, Jong-Moo;Lee, Joo-Won;Kim, Young-Min;Park, Jung-Soo;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Oh, Myung-Hwan;Kim, Jong-Seung;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1030-1033
    • /
    • 2004
  • We herewith report for the effect of dielectric surface modification on the electrical characteristics of organic thin-film transistors (OTFTs). The kist-jm-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide ($ZrO_2$) gate dielectric layer. The OTFTs are elaborated on the flexible plastic substrates through 4-level mask process to yield a simple fabrication process. In this work, we also have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Front Electrode and FTO of Dye-sensitized Solar Cell (염료감응 태양전지에서 전면전극/FTO 사이에 완충층으로서의 PLD로 증착한 $TiO_2$ 박막에 관한 연구)

  • Song, Sang-Woo;Roh, Ji-Hyoung;Lee, Kyung-Ju;Ji, Min-Woo;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.465-466
    • /
    • 2009
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. $TiO_2$ thin films were deposited on the ITO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD). We manufactured DSC unit cells then I-V and efficiency were tested by solar simulator.

  • PDF

Electrical and Optical Properties of In-Ga-Zn-O Thin Films for TTFTs

  • Kim, Ji-Hong;Lee, Won-Yong;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.309-309
    • /
    • 2009
  • In-Ga-Zn-O (IGZO) has drawn much attention as a compatible material for transparent thin film transistors (TTFT) channel layer due to its high mobility and optical transparency at low processing temperatures. In this work, we investigated the effect of oxygen ambient on structural, electrical and optical properties of amorphous In-Ga-Zn-O (IGZO) thin films by using pulsed laser deposition (PLD). The films were deposited at various oxygen pressures and the structural, electrical and optical properties were investigated. X-ray diffraction (XRD) analysis showed that amorphous IGZO films were grown at all oxygen pressures. The surface morphology and optical properties with various oxygen pressures were studied by field emission scanning electron microscopy (FE-SEM) and UV-VIS spectroscopy, respectively. The grain boundary was observed more apparently and the calculated optical band gap became larger as oxygen pressure increased. To examine the electrical properties, Hall-effect measurements were carried out. The films showed high mobility.

  • PDF

Characteristic and Electrical Properties of $TiN_xO_y/TiN_x$ Multilayer Thin Film Resistors with a High Resistance ($TiN_xO_y/TiN_x$다층 박막을 이용한 고저항 박막 저항체의 특성평가)

  • Park, Kyoung-Woo;Hur, Sung-Gi;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.19-19
    • /
    • 2009
  • TiNxOy/TiNx multilayer thin films with a high resistance (~ k$Omega$) were deposited on SiO2/Si substrates at room temperature by sputtering. The TiNx thin films show island and smooth surface morphology in samples prepared by dc and rf magnetron sputtering, respectively. TiNxOy/TiNx multilayer has been developed to control temperature coefficient of resistance (TCR) by the incorporation of TiNx layer (positive TCR) inserted into TiNxOy layers(negative TCR). Electrical and structural properties of sputtered TiNxOy/TiNx multilayer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multilayer films were annealed at various temperatures in oxygen ambient. Samples annealed at 700 oC for 1 min exhibit a good TCR value and a stable high resistivity.

  • PDF

Characterization of the Spiral Type Fault Current Limiters Using High-$T_c$ Superconducting Thin Films (나선형태로 제작된 고온초전도 한류기의 특성해석)

  • 정동철;박성진;강형곤;최효상;곽민환;임해용;황종선;최명호;추철원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.518-524
    • /
    • 2001
  • We report the current limiting properties of superconducting fault current limiters (SFCL). Our SFCL was patterned in a spiral type on a YB $a_2$C $u_3$$O_{7-x}$(YBCO) film deposited using rf sputtering techniques and was coated with a gold shunt layer in order to disperse the heat generated at hot spots in the YBCO film. Current increased up to 13.5 $A_{peak}$ at 60 Hz for the voltage of 13 $V_{peak}$, which is the minimum quench point, and increased up to 17.6 $A_{peak}$ at 60 Hz fo the voltage fo 141.4 $V_{peak}$. The quench completion time was 5 msec at 13 $V_{peak}$ and 4 msec at 141. $V_{peak}$ respectively. we think that this architecture using spiral-type SFCL can be useful for the protection of the power delivery systems from fault currents.s. currents.s.

  • PDF

Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum (박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발)

  • Lee, Jae-Hong;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

Modeling of RF Sputtering Process for ZnO Thin film Deposition using Neural Network (신경회로망을 이용한 RF 스퍼터링 ZnO 박막 증착 프로세스 모델링)

  • Lim, Keun-Young;Lee, Sang-Keuk;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.624-630
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex property. To propose a method that could verify and predict the relations of process variables, neural network was used. At first, ZnO thin films were deposited by using RF magnetron sputtering process with various conditions. Si, GaAs, and Glass were used as substrates. The temperature, work pressure, and RF power of the substrate were $50\sim500^{\circ}C$, 15 mTorr, and $180\sim210W$, respectively : the purity of the target was ZnO 4 N. Structural properties of ZnO thin films were estimated by using XRD (0002) peak intensity. The structure of neural network was a form of 4-7-1 that have one hidden layer. In training a network, learning rate and momentum were selected as 0.2, 0.6 respectively. A backpropagation neural network were performed with XRD (0002) peak data. After training a network, the temperature of substrate was evaluated as the most important parameter by sensitivity analysis and response surface. As a result, neural network could capture nonlinear and complex relationships between process parameters and predict structural properties of ZnO thin films with a limited set of experiments.

Fabrication and Characteristics of Amperometric NO2 Gas Sensors (전류검출형 NO2가스 센서의 제작과 특성평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.821-827
    • /
    • 2007
  • The nitrogen oxides, NO and $NO_2$, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test. Amperometric Nitrogen dioxide sensor was fabricated using NASICON and an $NaNO_2$ layer deposited on the counter electrode. The current response was almost linear with Nitrogen dioxide concentration in the range 1-350 ppb at $150^{\circ}C$.

Preparation of Bismuth Thin Films by RF Magnetron Sputtering and Study on Their Electrical Transport Properties (RF 마그네트론 스퍼터링을 이용한 Bismuth 박막의 제조와 그 전기적 특성 연구)

  • Kim Dong-Ho;Lee Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Bismuth thin films were prepared on glass substrate with RF magnetron sputtering and effects of substrate temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth after nucleation and the onset of coalescense of grains at 393 K were observed with field emission secondary electron microscopy. Continuous thin films could not be obtained above 473 K because of grain segregation and island formation. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility. Resistivity of bismuth film has its minimum (about 0.7 x 10/sup -3/ Ωcm) in range of 403~433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to cancellation of the decrease of carrier density and the increase of mobility. The abrupt change of electrical properties of film annealed above 523 K was found to be caused by partial oxidation of bismuth layer in x-ray diffraction analysis.