• 제목/요약/키워드: dentin

검색결과 1,122건 처리시간 0.025초

법랑질(琺瑯質)과 상아질(象牙質)에 대한 Etched Porcelain의 전단접착강도(剪斷接着强度)에 관(關)한 연구(硏究) (SHEAR BOND STRENGTH OF THE ETCHED PORCELAIN TO ENAMEL AND DENTIN)

  • 강정민;양규호
    • Restorative Dentistry and Endodontics
    • /
    • 제15권1호
    • /
    • pp.165-173
    • /
    • 1990
  • The purpose of this study was to measure the effect of two commercially available composite resin systems and GC dentin cement on the shear bond strength of the etched porcelain to enamel and dentin. The specimens were divided into six groups, and each group was as follows. Group I : etched enamel-dentin/enamel bonding agent-CHOICE-unfilled resin-silane-etched porcelain Group II : etched enamel-Scotchbond 2-Silux-unfilled resin-silane-etched porcelain. Group III : dentin-dentin/enamel bonding agent-CHOICE-unfilled resin-silane-etched porcelain Group IV : dentin-Scotchbond 2-Silux-unfilled resin-silane-etched porcelain Group V : dentin-GC dentin cement-dentin/enamel bonding agent-CHOICE-unfilled resin-silane-etched porcelain Group VI : dentin-GC dentin cement-Scotchbond 2-Silux- unfilled resin-silane-etched porcelain Following polymerization. the specimens were stored in 100% humidity for 24 hours before testing. Shear bond strength was measured with Instron universal testing machine. The results obtained were as follows; 1. The shear bond strength of the etched porcelain to enamel was greater than that of the etched porcelain to dentin. 2. The shear bond strength of Silux-Scotchbond 2 to dentin was greater than that of CHOICE-dentin/enamel bonding agent. 3. There was no significant difference in shear bond strength to dentin between the groups lined with GC dentin cement. 4. The shear bond strength of Silux-Scotchbond 2 to dentin was greater than that of the groups lined with GC dentin cement. 5. There was no significant difference in shear bond strength to dentin between the groups lined with GC dentin cement and the group directly bonded with CHOICE-dentin/enamel bonding agent.

  • PDF

치아 상아질의 재생과 그 임상적 활용 (Tooth dentin regeneration and its clinical application)

  • 배현숙;박주철
    • 대한치과의사협회지
    • /
    • 제55권5호
    • /
    • pp.352-357
    • /
    • 2017
  • Teeth are made up of three hard tissues, enamel, dentin, and cementum. The dental pulp is the only non-mineralized connective tooth tissue that is surrounded by dentin. The dentin-pulp complex is able to respond to injury by producing hard tissue deposition. However, dentin is considered one of the most difficult tissues to regenerate because of its unique anatomic and physiologic nature. Recently, advances in understanding the applicability of bio-active dentin regenerating proteins are emerging with the development of biological-based therapies using bio-active materials. Dentin defects were regenerated by the deposition of tubular physiologic dentin after application of the bio-active protein in a beagle dog model. Therefore, the bio-active protein may be able to serve as a novel dentin regenerating material and improve symptoms of dentin hypersensitivity.

  • PDF

Pulsed Nd : YAG 레이저 조사에 의한 상아질의 온도변화에 대한 연구 (THERMAL CHANGE OF THE DENTIN BY USE OF PULSED Nd : YAG LASER)

  • 김영일;황인남;오원만
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.218-226
    • /
    • 1996
  • This study was performed to evaluate the possibility of pulpal damage by measuring temperature change occured in dentin according to the thickness of dentin, the time of irradiation and the output of laser energy when the dentin surfaces were irradiated with Nd-YAG laser under water coolant and no water coolant. Sound upper and lower molar teeth were sectioned with 1mm, 1.5mm and 2mm thickness of dentin discs and divided into 4 groups by dentin thiness. 0.5 watt, 1 watt, 1.5 watt and 2 watt-energied beam of pulsed 10 p.p.s of Nd : YAG laser was applied respectively to dentin surfaces for 8 secs and 16 secs when water coolant is used or not.Ant then the temperature changes occurd in dentin were measured at opposite surfaces of laser-irradiated dentin surfaces with digital thermometer. The results were as follow. 1. When the amount of irradiated energy was same, the temperatue changes of dentin were higher as the thickness of dentin discs was thinner(p<0.01). 2. When the amount of irradiated energy and the thickness of dentins were same, The temperature changes of dentin were lower under water coolant than under no water coolant in all groups(p<0.01). 3. With the increase of time of irradiation, the temperature changes of Dentin became higher in all groups and were steeply increased at initial period of irradiation of laser. 4. Under the same thickness of dentin, the temperature changes of dentin became higher as irradiated energy was increased. These results suggest that when the beam of Nd : YAG Laser is irradiated to dential hard tissue, amount of irradiating energy, thickness of dentin, using water coolant must be considered in order to minimize thermal damage of the pulp.

  • PDF

치주수술 후 상아질 지각과민증에 대한 저수준 레이저 처치의 임상적 효과 (Clinical Effect Of Low Level Laser Therapy In The Treatment Of Dentin Hypersensitivity Following Periodontal Surgery)

  • 김남윤;임성빈;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.230-243
    • /
    • 1996
  • Root surface exposure due to gingival recession after periodontal surgery, dentin exposure after root planing elicit pain response when exposed to mechanical, heat, chemical or osmotic stimulation. Especially, patients treated with periodontal surgery, show high frequency and there have been reports showing the 1 out of 7 patients have dentin hypersensitivity. There have been many studies on the clinical effects of various materials on the treatment of dentin hypersensitivity. but, none could provide absolute clinical efficacy. In this study, 45 teeth from 30 patients, who had had periodontal surgery and showed dentin hypersensitivity after surgery were chosen for the experimental group and they were illuminated with laser, 15teeth were chosen for the control group and they were not exposed to laser. After this dentin hypersensitivity was elicited by tactile, compressed air, cold water and then, the degree was evaluated using NRS(Numerical Rating Scale). And during LLLT(Low Level Laser Therapy) semiconductor laser using Gallium - Arsenide as a diode was illuminated for 180 seconds at a frequency of 7(500Hz). This therapy was done 10 times, and each time the changes in dentin hypersensitivity was evaluated using NRS. The results were as follows : 1. After treat with LLLT on dentin hypersensitivity due to periodontal surgery, 22.2% showed total loss of dentin hypersensitivity, 60.0% showed loss of tactile dentin hypersensitivity, 48.8% showed loss of compressed air dentin hypersensitivity, 22.2% showed loss of cold water dentin hypersensitivity. 2. As a result of clinical evaluation of dentin hypersensitivity using NRS, there was significant increase in improvement of dentin hypersensitivity in the experimental group compare to the control group(P<0.05). And there was almost no natural loss of dentin hypersensitivity in the control group. 3. In comparison of the stages of evaluation, there was significant difference in between experimental and control group. after the second visit(P<0.05), and the difference increased with each visit.

  • PDF

우식상아질(齲蝕象牙質)의 물리화학적(物理化學的) 특성(特性)에 관(關)한 분석(分析) 연구(硏究) (AN ANALYTICAL STUDY ON THE PHYSICO-CHEMICAL CHARACTERISTICS OF CARIOUS DENTIN)

  • 한종수;최호영;민병순;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제12권1호
    • /
    • pp.65-76
    • /
    • 1986
  • Carious dentin can be classified, on the basis of their clinical characteristics, into three groups; sound, sclerotic and active carious dentin. Active carious dentin differs from sclerotic dentin by its abscence of variable bacteria within tubles and amount of chemical content. But the apatite molecules of active carious dentin are not fully studied. The purpose of this study was to observed the physico-chemical characteristics of deep carious dentin. The samples of sound, sclerotic and active carious dentin were obtained respectively from 300 freshly extracted carious teeth. Bacterial-rich zone of superficial soft dentin layer was removed with hand instruments from all samples in advance. The samples were powdered and sieved (200 mesh) before analyses. Identification and estimation of the crystallinity of the samples were carried with X-ray diffraction and infrared absorption analyses. Measurements were made on a Rigaku Denki (Rigaku, geiger flex III, Japan) X-ray diffractometer with Cu-target at 30 Kv, 30 mA and are traced on a monochromatic tracer. Infrared absorption analysis was made on FT-IR spectrophometer (Nicolet Instrument Co.) using KBr pellets containing the samples and was recorded on data process (Model IR-80. Nicolet Instrument, Co). The following conclusions were as follows; 1. The nature of the main inorganic structure of sound, sclerotic and active carious dentin proved to be hydroxyapatite. 2. It was difficult to determine the identification due to their crystallinity of sound, sclerotic and active carious dentin. But sound dentin was the highest in crystallinity among them. 3. The magnesium whitlockite was to be found in active carious dentin, but not in sound and sclerotic dentin. 4. The carbonate content was highest in sound dentin, but the lowest was in active carious dentin.

  • PDF

Nd : YAG, HO : YAG, Er : YAG 레이저 조사에 의한 상아질의 물리적 변형 및 절제(切除)역치에 관한 연구 (PHYSICAL MODIFICATION AND ABLATION THRESHOLDS OF DENTIN INDUCED BY ND : YAG, HO : YAG, AND ER : YAG LASERS)

  • 이상호
    • 대한소아치과학회지
    • /
    • 제23권4호
    • /
    • pp.954-967
    • /
    • 1996
  • Laser application to modify healthy permanent dentin to improve microhardness and caries resistence has been previously reported but the physical modification and ablation thresholds of carious and sclerotic dentin has yet to be identified. This study determined the energy density required by modify (physical modification threshold, PMT) and remove (ablation threshold, AT) infected carious, affected and selerotic dentin compared to healthy permanent dentin. $1{\pm}0.25mm$ thick dentin sections(n=272) from extracted human teeth were used. Smear layer was removed 0.5M EDTA for 2 minutes. Utilizing three pulsed fiberopitc delivered contact lasers with different emission wavelengths($1.06{\mu}m$=Nd : YAG, $2.10{\mu}m$=Ho : YAG and $2.94{\mu}mEr$ : YAG). The energy density($J/cm^2$) was incrementally increased and the resulting tissue interaction classified on a scale from 0-6. A minimum of 5 repetitions/energy density were completed. Light microscopy(10-25X) was used to verify the physical modification(scale=3) and ablation thresholds(scale=4) of the various forms of dentin and the data were analyzed by logistic regression at the 95 % confidence interval. PMT and AT by the laser and the dentin types were: PMT and AT was lower in infected dentin than in sound dentin for all lasers. PMT and AT induced by Nd : YAG>Ho : YAG>Er : YAG for all forms of dentin. Microhardness was increased in sound dentin at PMT. Morphology of crater examined by light microscopy showed Nd : YAG was safe and effective for removing carious dentin and Er: YAG was effective for removing sound dentin. The PMT and AT for YAG lasers are different as a function of dentin type which may be utilized for selective modification and removal of dentin.

  • PDF

자가부식형 상아질 접착제와 상아질과의 전단결합강도 비교 (Comparison of the shear bond strength of self-etching dentin bonding agents to dentin)

  • 노수정;김부섭;정인성
    • 대한치과기공학회지
    • /
    • 제29권2호
    • /
    • pp.141-150
    • /
    • 2007
  • The purpose of this study was to ascertain the bonding durability of self-etching dentin bonding agents to dentin by means of shear bonding strength. Several acid-etching dentin bonding system (ESPE Z100) and self-etching dentin bonding systems (DEN-FIL, GRADIA DIRET) were used. The occlusion surface of human molars were ground flat to expose dentin and treated with the etch bonding system according to manufactures instruction and followed by composite resin application. After 24hours of storage at 37$^{\circ}C$, the shear bonding strength of the specimens was measured in a universal testing machine with a 1mm/min crosshead speed. An one-way analysis of variance and the scheffe test were performed to identify significant differences (p<0.05). The bonded interfacial surfaces and treated dentin surfaces were examined using a SEM. Through the analysis of shear bond strength data and micro-structures of dentin-resin interfaces, following results are obtained. In dentin group, the shear bond strength of DEN-FIL showed statistical superiority in comparison to the other groups and followed by ESPE Z100 and GRADIA DIRECT (p<0.05).

  • PDF

Benzalkonium Chloride가 BPDM/HEMA계 접착제의 상아질 접착에 미치는 영향 (EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH BPDM/HEMA SYSTEM)

  • 권병균;안식환;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제21권2호
    • /
    • pp.569-584
    • /
    • 1996
  • The purpose of this study was to elucidate the effect of benzalkonium chloride on tensile bond strength of BPDM/HEMA dentin bonding. One hundred sixty dentin specimens from freshly extracted bovine mandibular incisors were used, and 0, 0.02, 0.1 or 0.5% benzalkonium chloride solution was applied to the dentin specimen with/after phosphoric acid. 32% phosphoric acid was used when the specimens were bonded with One-Step$^{TM}$, a BPDM/HEMA system and 10% was used when bonded with All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system. Aelitefil$^{TM}$ composite resin was bonded to the pretreated dentin specimen with the use of All-Bond$^{(R)}$ 2 or One-Step$^{TM}$ dentin bonding agent. After the bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strength was measured. The fractured dentin specimens were examined under the scanning electron microscope. The results were as follows : Benzalkonium chloride application after acid-treatment resulted in decrease of dentin bond strength of One-Step$^{TM}$, a BPDM/HEMA system (p>0.05). Benzalkonium chloride application did not exert any influence on dentin bond strength of All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system (p>0.05). There was no relationship between the concentration or application method of benzalkonium chloride and the dentin bond strength of One-Step$^{TM}$ or All-Bon$^{(R)}$ 2 (p<0.05). On SEM examination of the fractured dentin-resin interface, while mixed failure was prominent in dentin bonding with One-Step$^{TM}$, adhesive and mixed failures were seen together in dentin bonding with All-Bond$^{(R)}$ 2 regardless of the concentration and application method of benzalkonium chloride.

  • PDF

산표면처리 후 노출된 상아질 교원섬유의 용해가 하이브리드층 형성에 미치는 영향 (EFFECT OF COLLAGEN DISSOLUTION IN ACID CONDITIONED DENTIN ON RESIN-DENTIN HYBRID LAYER)

  • 전성민;손호현;이광원
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.227-241
    • /
    • 1996
  • The effect of collagen dissolution in acid conditioned dentin was morphologically examined by both scanning and transmission electron microscopy. 18 freshly extracted human molars and dentin bonding systems of All Bond 2, Scotchbond Multipurpose, Superbond D-Liner were used in this study. For SEM preparation, each 3 of ~ exposed dentin surfaces were acid conditioned by using various acids within the above three bonding systems respectively. After acid conditioning of the other 3 exposed dentin surfaces as above, they were treated with 1.7% NaOCl for 2 minutes. The remaining 3 dentin surfaces were acid conditioned and treated with 3.3 % NaOCl for 2 minutes. All of the specimens were then fixed in 4 % glutaraldehyde for 12 h at $4^{\circ}C$ and dehydrated in ethanols grades from 50 % to 100 %, then surface changes of the specimens were observed by using SEM. For TEM preparation, exposed dentin surfaces were acid conditioned with the same acid as SEM specimens and treated with 1.7%, 3.3 % NaOCl respectively, then applied with corresponding bonding agents. After the procedures were finished, composite resin were applied on the dentin surfaces and light cured. Small, rectangular sticks with end dimensions of approximately 1 by 1 mm were sectioned and further sample preparative techniques for transmission electron microscopy were performed in accordance with the procedures used for ultrastructural TEM observations of calcified tissues. The results were as follows : 1. In the 1.7 % NaOCl retreated specimens after acid conditioning, the porous dentin surface of intertubular dentin and wide opening of dentinal tubules were appeared. And there were fine irregularities on the intertubular dentin, indicating a clear difference as compared with the acid conditioned specimens. 2. In the 3.3% NaOCl retreated specimens after acid conditioning, the intertubular dentin was further eroded causing a more porous and wider opening of dentinal tubules. Moreover, sharp irregularities on the intertubular dentin were more evident than those of acid conditioned and 1.7% NaOCl retreated specimens. 3. In all of the acid conditioned specimens, the resin-dentin hybrid layer of approximately 3.5mm thickness was formed and the collapsed collagen layer was observed on the uppermost part of hybrid layer in the specimens applied with All Bond 2. The collgen fibrils of intertubular dentin in specimens applied with Scotchbond Multipurpose were running perpendicular to the interface, and electron dense black layer demarcated from the deep unaltered dentin was more evident in the specimen applied with Superbond D-Liner than any other specimens. 4. In the 1.7 % NaOCl retreated specimens after acid conditioning, the resin-dentin hybrid layer of approximately 2.5-3.0mm thickness was formed and the collapsed collagen layer and longitudinally running collagen fibrils as shown in the acid conditioned specimens were observed in the specimens applied with All Bond 2 and Superbond D-Liner. 5. In all of the 3.3% NaOCl retreated specimens after acid conditioning, the evidence of resin-dentin hybrid layer was not identified ; nevertheless, the longitudinally running collagen fibrils remained slightly in the specimens applied with All Bond 2.

  • PDF

도말층 제거와 상아질의 부위가 치수강 내부 상아질에 대한 수종 상아질 결합제의 전단결합성질에 미치는 영향 (THE EFFECT OF SMEAR LAYER REMOVAL AND POSITION OF DENTIN ON SHEAR BOND PROPERTIES OF DENTIN BONDING SYSTEMS TO INTERNAL CERVICAL DENTIN)

  • 임연아;유영대;이용근;이수종;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제24권3호
    • /
    • pp.465-472
    • /
    • 1999
  • The aim of this study was to determine the shear bond properties of four dentin bonding systems to internal cervical dentin, and to investigate the effect of the pretreatment for removing smear layer and position of dentin on shear bond strength of dentin bonding agents. The materials tested in this study were consisted of four commercially available dentin bonding systems[Allbond 2(AB), Clearfil Linerbond 2(CL), Optibond FL(OP), Scotchbond Multi-purpose(SB)], a restorative light-cured composite resin[Z100]J and a chelating agent[RC-prep(RC)]. Fifty-six freshly extracted human molars were used in this study. Dentin specimens were prepared by first cutting the root of the tooth 1mm below the cementoenamel junction with a diamond bur in a high speed handpiece under air-water coolant, and then removing occlusal part at pulp horn level by means of a second parallel section, The root canal areas were exposed by means of cutting the dent in specimens perpendicular to the root axis. Dentin specimens were randomly assigned to two groups(pretreated group, not-pretreated group) based on the pretreatment method of dentin surface. In pretreated group, RC was applied to dentin surface for 1minute and then rinsed with NaOCl. In not-pretreated group, dentin surface was rinsed with saline Each groups were subdevided into four groups according to dentin bonding systems. Four dentin bonding systems and a restorative resin were applied according to the directions of manufacturer. The dentin-resin specimens were embedded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of $1{\times}1mm$. The cut specimens were divided into three groups according to the position of internal cervical dentin. The shear bond properties of dentin-resin specimens were measured with Universal testing machine (Zwick, 020, Germany) with the cross head speed of 0.5mm/min. From this experiment. the following results were obtained : 1. In case of shear bond strength, there was no significant difference among dentin bonding systems in not-pretreated groups, whereas in pretreated groups, the shear bond strengths of AB and of SB were statistically significantly higher than those of CL and of OP. 2. The shear bond strengths of AB and of SB in pretreated groups were significantly higher than those in not-pretreated groups. 3. The shear bond strengths of radicular layer of OP were higher than those of occlusal layer of OP in not-pretreated groups, and of AB in pretreated groups. The shear bond strengths of radicular layer of AB and of CL in not-pretreated groups were higher than those in pretreated group.

  • PDF