• Title/Summary/Keyword: dentification

Search Result 3, Processing Time 0.011 seconds

System dentification of Apartment Buildings with Wall-Slab configuration using Modal Analysis (모드해석을 통한 벽식구조 아파트건물의 System Identification)

  • 장극관;천영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.191-197
    • /
    • 1998
  • This paper described the dynamic characteristics of 20-story apartment buildings from the results of full-scale measurements and analysis. The natural frequencies and mode shapes are quantified by measuring and analyzing ambient vibrations of the structure and compared with the results from dynamic analysis. Comparison with computed mode shapes and frequencies shows good agreement with the experimental results. It proved that it is important to estimate coupling beam and soil parameters through a comparison of the measured results with calculated results.

  • PDF

A Performance Improvement of Automatic Butterfly Identification Method Using Color Intensity Entropy (영상의 색체 강도 엔트로피를 이용한 나비 종 자동 인식 향상 방법)

  • Kang, Seung-Ho;Kim, Tae-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.624-632
    • /
    • 2017
  • Automatic butterfly identification using images is one of the interesting research fields because it helps the related researchers studying species diversity and evolutionary and development process a lot in this field. The performance of the butterfly species identification system is dependent heavily on the quality of selected features. In this paper, we propose color intensity (CI) entropy by using the distribution of color intensities in a butterfly image. We show color intensity entropy can increase the recognition rate by 10% if it is used together with previously suggested branch length similarity entropy. In addition, the performance comparison with other features such as Eigenface, 2D Fourier transform, and 2D wavelet transform is conducted against several well known machine learning methods.

Component Analysis of Cultivated Ginseng, Red Ginseng, Cultivated Wild Ginseng, and Red Wild Ginseng Using HPLC Method (HPLC를 이용한 인삼, 홍삼, 산양산삼 및 홍산삼의 성분 비교 분석)

  • Lee, Jang-Ho;Kwon, Ki-Rok;Cha, Bae-Chun
    • Journal of Pharmacopuncture
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Objectives The aim of this experiment is to provide an differentiation of ginseng, red ginseng, cultivated wild ginseng(CWG), and red wild ginseng(RWG) through component analysis using HPLC(High Performance Liquid Chromatography, hereafter HPLC). Methods Comparative analyses of ginsenoside $Rg_3$, ginsenoside $Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ of various ginsengs were conducted using HPLC. Results 1. CWG was relatively heat-resistant and showed slow change in color during the process of steaming and drying, compared to cultivated ginseng. 2. Ginsenoside $Rg_3$ was not detected in cultivated ginseng and CWG, whereas it was high in red ginseng and RWG. Ginsenoside $Rg_3$ was more generated in red ginseng than in RWG. 3. Ginsenoside $Rh_2$ appreared during steaming and drying of cultivated ginseng, whereas it was more increased during steaming and drying of CWG. 4. Ginsenoside $Rg_1$ content was more increased during steaming and drying of cultivated ginseng, whereas it was more decreased during steaming and drying of CWG. 5. Ginsenoside $Rb_1$ content was increased about 500% during steaming and drying of cultivated ginseng, whereas it was increased about 30% during steaming and drying of CWG, indicating that ginsenoside $Rb_1$ was more generated in red ginseng than in RWG. 6. Ginsenoside $Rg_3$ content was higher, whereas ginsenoside $Rg_1$ content was lower in 11th RWG than in 9th RWG, indicating that ginsenoside $Rg_3$ content was increased and $Rg_1$ content was decreased as steaming and drying continued to proceed. Ginsenoside $Rh_2$ and $Rb_1$ contents began to be increased, followed by decreased after 9th steaming and drying process. Conclusions Above experiment data can be an important indicator for the dentification of ginseng, red ginseng, CWG, and RWG. And the following studies will be need for making good product using CWG.