• Title/Summary/Keyword: dental alloy

Search Result 486, Processing Time 0.027 seconds

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

A STUDY ON THE ROOT CANAL MORPHOLOGY CHANGE BY NICKEL-TITANIUM AND STAINLESS STEEL FILE INSTRUMENTATION USING COMPUTERIZED TOMOGRAPHY (Nickel-Titanium file과 Stainless steel file을 이용한 근관형성시 컴퓨터 단층촬영사진상의 근관형태 변화에 관한 연구)

  • So, Mun-Seop;Im, Mi-Kyung;Lee, Keon-Il;Lee, Yong-Keun;Lee, Su-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.659-669
    • /
    • 1997
  • The goals of root canal instrumentation are complete debridement of pulp tissue, removal of microbes and affected dentin, and proper cleaning and shaping of the root canal space before obturation. Instrumentation with stainless steel files has been shown to produce undesirable results in canals, regardless of the improved technique or modified file type used. Nickel-Titanium(Ni-Ti) alloy has been shown to be exceptionally elastic, having a lower bending moment and lower permanent set after torsion, compared with similar gauge stainless steel. The purpose of this study was to evaluate the change of root canal prepared by Ni-Ti rotary and stainless steel instruments. Thirty-four single rooted teeth of similar shape and canal size were divided into three groups. The teeth were scanned by computed tomography before instrumentation. In group 1, canals were instrumented using a step-back technique with K-file. In group 2, canals were prepared with K-flex file using the same technique as group 1. Group 3 was prepared with nickel-titanium(Ni-Ti) rotary instrument using a manufacture's instruction. Instrumented teeth were again scanned using computed tomography, and reformated images of the uninstrumented canals were compared with images of the instrumented canals. K-flex file and Ni-Ti file caused significantly less canal transportation than K-file in the 8mm root canal section from the apex(p<0.05). K-flex file and Ni-Ti file produced more centered canal preparation than K-file in the 2mm section(p<0.05). Ni-Ti file maintained more precisely the center of the canal than K-flex file in the 10mm section (p<0.05). There was no difference in the removed volume of canals among each groups.

  • PDF

Surface Characteristics of Anodized Ti-3wt%, 20wt%, and 40wt%Nb Alloys

  • Ko, Y.M.;Choe, H.C.;Jang, S.H.;Kim, T.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.143-147
    • /
    • 2009
  • In biomedical implants and dental fields, titanium has been widely utilized for excellent corrosion resistance and biocompatibility. However, Ti and its alloys are nonbioactive after being implanted in bone. In this study, for the purpose of improvement in biocompatibility the anodic $TiO_2$ layer on Ti-xNb alloys were fabricated by electrochemical method in phosphate solution, and the effect of Nb content on the pore size, the morphology and crystallinity of Ti oxide layer formed by the anodic oxidation method was investigated. The Ti containing Nb up to 3 wt%, 20 wt% and 40 wt% were melted by using a vacuum furnace. The sample were cut, polished, and homogenized for 24 hr at $1050^{\circ}C$ for surface roughness test and anodizing. Titanium anodic layer was formed on the specimen surface in an electrolytic solution of 1 M phosphoric acid at constant current densities ($30mA/cm^2$) by anodizing method. Microstructural morphology, crystallinity, composition, and surface roughness of oxide layer were observed by FE-SEM, XRD, EDS, and roughness tester, respectively. The structure of alloy was changed from $\alpha$-phase to $\beta$-phase with increase of Nb content. From XRD results, the structure of $TiO_2$ formed on the Ti-xNb surface was anatase, and no peaks of $Nb_2O_5$ or other Nb oxide were detected suggesting that Nb atoms are dispersed in $TiO_2$-based solid solution. Surface roughness test and SEM results, pore size formed on surface and surface roughness decreased as Nb content increased. From the line analysis results, intensity of Ti peak was high in the center of pore, whereas, intensity of O peak was high in the outside of pore center.

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.

AN IN-VITRO WEAR STUDY OF CEROMER AND HUMAN ENAMEL (Ceromer (Targis)에 의한 법랑질 마모에 관한 연구)

  • Kim, Jeong-Min;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.438-445
    • /
    • 2000
  • The ideal restorative material should mimic the properties of the tissues it replaces. Dental composite resins have been used widely as restorative materials due to its advantages such as excellent esthetics and ease of manipulation. But inadequate wear resistance has been a major factor limiting the use of composite restorative materials. Improved manufacturing techniques have allowed the development of hybrid composites, with a greater percentage volume filler loading, which have improved physical and mechanical properties. However they are lacking in the study of wear resistance. The purpose of this study was to evaluate the wear of human enamel against ceromer by the use of a pin-on-disk type wear testers. Discs of ceromer(Targis ; lvoclar Vivadent, Amherst. NY) and discs of type III gold alloy as a control were used f9r test specimens. Intact cusp of premolar and molar were used for enamel specimens. The wear of enamel was determined by weigh-ing the cusp before and after each test, and the weight converted to volumes by average densi-ty of enamel. Surface profilometer was used to quantify wear of the ceromer and gold specimens. Vicker's hardness tester was used to evaluate the surface hardness of test specimens. The SEM was used to evaluate the wear surfaces The results were as follows; 1. Ceromer produced less enamel wear than gold(p<0.05) 2. The wear volume of ceromer was greater than that of gold(p<0.01) 3. The hardess of ceromer was lower than that of gold, but there was no correlation between the hardness and wear of the ceromer and gold. 4. SEM analysis revealed that there were many voids and microcracks in the wear tract of ceromer In gold group, many minute V-shaped grooves were examined.

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF ESTHETIC RESTORATIVE MATERIALS ON ROOT CARIES RESTORATION (치근 우식 수복에 사용되는 심미성 수복물의 변연누출에 관한 연구)

  • Han, Jin-Sun;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.205-213
    • /
    • 1993
  • The purpose of the study was to evaluate the degree of the marginal leakage of esthetic restorative materials on root caries restoration. 120 cavities were prepared to $90^{\circ}$ butt joint on all margins on the crown and root portion, and divided into 4 groups. The four groups of cavity were filled with Amalgam(Dongmuyung Dental Alloy Co., Ltd, KOREA), Silux$^{(R)}$(3M Co., USA)-Scotch Bond 2$^{(R)}$(3M Co., USA), Silux$^{(R)}$-All Bond$^{(R)}$(BISCO USA), and GC Fuji II$^{(R)}$(G-C Co., JAPAN) respectively. The apical margin of the preparation was finished to leave a flash of restorative material. The coronal margin of the preparation was finished not to leave a flash of restorative material. All specimens were sectioned longitudinally with Isomet Low speed saw(Buether Ltd, USA). The degree of dye penetration was evaluated as the parameter of marginal leakage under the stereoscope. The results were as follows. 1. At the enamel and dentin/cementum margins, the margin were finished to leave a flash of material showed less marginal leakage than that were finished not to leave a flash of material (P<0.001). 2. The enamel margins showed less marginal leakage than the dentin/cementum margins(P<0.001). 3. There was no significant difference in the degree of the marginal leakage between Silux$^{(R)}$-Scotch Bond 2$^{(R)}$ group and Silux$^{(R)}$-All Bond$^{(R)}$ group.

  • PDF

Effect of Cristobalite and Quartz on the Compression Strength and Thermal Expansion Coefficients of Gold Alloy Investment Materials (금합금계 매몰재의 Cristobalite와 Quartz 첨가량에 따른 열팽창과 압축강도 변화)

  • Man-So Han
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.141-151
    • /
    • 2004
  • The physical properties of gold investment materials are depending on it's thermal expansion coefficients, compressive strength, and particles size distributions. Normally the gold investment materials are consisted of cristobalite, quartz and plaster. Since the thermal expansion coefficient of cristobalite and quartz are $2.6\times10^{-6}/^\circC$, $2.32\times10^{-6}/^\circC$, respectively, the composition ratio of each components influence the thermal and clinical properties of gold investment materials. Recently are imported from overseas and the commercial market is expected to expand. Thus it is necessary to develop the optimum strength and compressive strength of gold investment materials which the an homogeneous size distribution and thermal expansion coefficients. Therefore two different experiments has been done. Firstly the homogeneous cristobalite and quartz are made by pulverizing milling. Secondly the compressive strength and thermal expansion coefficients are analysed by the composition ratio of cristobalite and quartz. As a results of experiments, homogeneous distribution of cristobalite and quartz are observed by pulverizing and milling. The optimum compressive strength was obtained at the ratio of 45:25 cristobalite, quartz respectively.

  • PDF

A STUDY ON THE CORROSION OF AMALGAMS IN CHLORIDE SOLUTION (Chloride용액에서의 아말감부식에 대한 연구)

  • Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.502-514
    • /
    • 1998
  • The purpose of this study is to observe the corrosion characteristcs of four dental amalgams(CAULK FINE CUT, CAULK SPHERICAL, DISPERSALLOY, TYTIN) and to determine a function of chloride concentration through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylinderical metal mold, and condensed by hydrolic pressure. Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 6 months. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam m KCl and KCl-NaCl solution, which had chlonde concentration of 0.4 g/l, 0.8 g/l, 1.2 gil, and 1.6 gil at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was - 1500mV ~+800mV(vs. S.C.E.) in the working electrode and the scan rate was 50mV/sec. The results were as follows, 1. The corrosion potential. the potential of anodic current peak, and transpassive potential in the solution of high chloride concentration shifted to more cathodic direction than those in the solution of low concentration, and the current density in the solution of high chloride concentration was higher than that in the solution of low concentration. 2. The corrosion potential, the potential of anodic current peak, and transpassive potential for CAULK FINE CUT amalgam were the most cathodic among the others, and the current density were the highest among the others. 3. In the solution of low chloride concentration, the corrosion potential, the potential of anodic current peak, and transpassive potential for DISPERSALLOY were the most anodic among the others, however in the solution of high chloride concentration, those for TYTIN were the most anodic among the others. 4. The anodic polarization curve for CAULK SPHERICAL was similar to that for high copper amalgams.

  • PDF

Testing and evaluation of the corrosion behavior of Aluminum/Alumina bulk composites fabricated via combined stir casting and APB process

  • Abdalkareem Jasim;Ghassan Fadhil Smaisim;Abduladheem Turki Jalil;Surendar Aravindhan;Abdullah Hasan Jabbar;Shaymaa Abed Hussein;Muneam Hussein Ali;Muataz S. Alhassan;Yasser Fakri Mustafa
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.263-271
    • /
    • 2023
  • In this study, AA1060/Alumina composites were fabricated by combined stir casting and accumulative press bonding (APB). The APB process was repeated up to six press bonding steps at 300Ċ. As the novelty, potential dynamic polarization in 3.5Wt% NaCl solution was used to study the corrosion properties of these composites. The corrosion behavior of these samples was compared and studied with that of the annealed aluminum alloy 1060 and versus the number of APB steps. So, as a result of enhancing influence on the number of APB process, this experimental investigation showed a significant enhancement in the main electrochemical parameters and the inert character of the Alumina particles. Together with Reducing the active zones of the material surfaces could delay the corrosion process. Also, at higher number of steps, the corrosion resistance of composites improved. The sample produced after six number of steps had a low corrosion density in comparison with high corrosion density of annealed specimens. Also, the scanning electron microscopy (SEM), was used to study the corrosion surface of samples.

Influence of the accuracy of abutment tooth preparation on the marginal adaptation of Co-Cr alloy copings fabricated with a selective laser sintering technology (지대치삭제의정확도가레이져신터링기술로제작된Co-Cr 코핑의변연적합도에미치는영향)

  • Kim, Seo-Rahng;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.337-344
    • /
    • 2015
  • Purpose: The purpose of present study is to examine the correlation between the accuracy of abutment preparation and the marginal adaptation of metal coping. With this view, this study compared the correlations regard to the three different manufacturing methods of selective laser sintering technique, milling and casting. Materials and methods: Two master models were made in a different way. First model with deep chamfer margin was prepared directly by a general clinician and the second model was designed by 3-D designing software program with the same abutment preparation principle and produced by computer aided manufacturing. 12 Co-Cr alloy copings were produced respectively with three different method; SLS system, CAD/CAM milling and conventional lost wax technique from each master model. The total 72 copings fully sit on the master model were stereoscopically evaluated at 40 points along the entire circumferential margin. Results: Significant differences in the absolute marginal discrepancies of Co- Cr copings from SLS system (P=.0231) and casting method (P<.0001) were shown between hand preparation model and computer designed model. However, no significant difference was found between the two model groups from milling method (P=.9962). Conclusion: Within the limitation of this study, the effect of the accuracy of abutment preparation on the marginal adaptation of Co-Cr coping is statistically significant in SLS system and casting group. The copings produced by SLS system exhibited the lowest marginal discrepancies among all groups, and the marginal gap of this method group was influenced by the accuracy of the abutment preparation.