• Title/Summary/Keyword: density-functional theory

Search Result 501, Processing Time 0.029 seconds

Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the Lowest Triplet States. Density Functional Theory Study

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 1998
  • The molecular geometries and harmonic vibrational frequencies of biphenyl in the ground and the first excited triplet states have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G* basis set. Structural change occurs from a twisted benzene-like to a planar quinone-like form upon the excitation to the first excited state. Scaled harmonic vibrational frequencies for the ground state obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.

Molecular Structure and Vibrational Spectra of 9-Fluorenone Density Functional Theory Study

  • 이상연;부봉현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.760-764
    • /
    • 1996
  • The molecular geometry and vibrational frequencies of 9-fluorenone have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP) density functional methods with 6-31G* basis set. Harmonic vibrational frequencies obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals are newly assigned based on the B3LYP results. The B3LYP calculation is reconfirmed to be useful in the assignment of the fundamental vibrational frequencies.

Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing

  • Kwon, Gyemin;Kwon, Hyuksu;Lee, Jihye;Han, Sang Yun;Moon, Bongjin;Oh, Han Bin;Sung, Bong June
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.770-774
    • /
    • 2014
  • The bond dissociation energy (BDE) of the chemical bond between the carbon and oxygen atoms of a simple TEMPO-derivative is calculated by employing the density functional theory, the $2^{nd}$ order M${\phi}$ller-Plesset (MP2) perturbation theory, and complete basis set (CBS) methods. We find that BDE of the positive ion of the TEMPO-derivative is larger at least by 7 kcal/mol than that of the negative ion, which implies that the dissociation reaction rate of the positive ion should be slower than that of the negative ion. Such theoretical predictions are contrary to the results of our previous experiments (Anal. Chem. 2013, 85, 7044), in which the larger energy was required for negative o-TEMPO-Bz-C(O)-peptides to undergo the dissociation reactions than for the positive ones. By comparing our theoretical results to those of the experiments, we conclude that the dissociation reaction of o-TEMPO-Bz-C(O)-peptide should occur in a complicated fashion with a charge, either positive or negative, probably being located on the amino acid residues of the peptide.

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory (산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

Theoretical Electronic Structure of PTCDA and PTCDI Molecules

  • Hyeon, Jeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.221-223
    • /
    • 2013
  • Self-assembly of the molecular system of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and the amide analogue (PTCDI) is of potential importance for organic semiconductor devices. Therefore we studied the density of states (DOS), the charge densities, and intermolacular bond lengths for PTCDA and PTCDI using the density functional theory calculations.

  • PDF

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D.;Sarangapani, Radhakrishnan;Jadhav, Pandurang. M.;Tewari, Surya. P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.564-570
    • /
    • 2012
  • s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

Helical Compounds Forming Gas-Phase Dimers: A Dispersion-corrected Density Functional Investigation

  • Tongying, Pornthip;Sooksimuang, Thanasat;Tantirungrotechai, Yuthana
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1231-1236
    • /
    • 2011
  • Chiral discrimination is the ability to distinguish one enantiomeric form over another. The differential binding interaction between two molecules with the same helicity and those with the opposite helicity was investigated by using dispersion-corrected density functional theory. [5]helicene, tetrahydro[5]helicene and the polar D-${\pi}$-A compounds, 3,12-dimethoxy-7,8-dicyano-[5]helicene and 3,12-dimethoxy-7,8-dicyano-tetrahydro[5]helicene were the monomers considered in this study. In gas phase, the dimeric interaction from two helical molecules with the opposite handedness is greater than from those with the same handedness. The stable configurations of such dimers were identified. The most stable configuration tends to be the one with maximum contact between monomers.

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.