• Title/Summary/Keyword: density wave oscillation

Search Result 32, Processing Time 0.018 seconds

Growth of AlN/GaN HEMT structure Using Indium-surfactant

  • Kim, Jeong-Gil;Won, Chul-Ho;Kim, Do-Kywn;Jo, Young-Woo;Lee, Jun-Hyeok;Kim, Yong-Tae;Cristoloveanu, Sorin;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.490-496
    • /
    • 2015
  • We have grown AlN/GaN heterostructure which is a promising candidate for mm-wave applications. For the growth of the high quality very thin AlN barrier, indium was introduced as a surfactant at the growth temperature varied from 750 to $1070^{\circ}C$, which results in improving electrical properties of two-dimensional electron gas (2DEG). The heterostructure with barrier thickness of 7 nm grown at of $800^{\circ}C$ exhibited best Hall measurement results; such as sheet resistance of $215{\Omega}/{\Box}$electron mobility of $1430cm^2/V{\cdot}s$, and two-dimensional electron gas (2DEG) density of $2.04{\times}10^{13}/cm^2$. The high electron mobility transistor (HEMT) was fabricated on the grown heterostructure. The device with gate length of $0.2{\mu}m$ exhibited excellent DC and RF performances; such as maximum drain current of 937 mA/mm, maximum transconductance of 269 mS/mm, current gain cut-off frequency of 40 GHz, and maximum oscillation frequency of 80 GHz.

Studies on the Fabrication and Characteristics of PHEMT for mm-wave (mm-wave용 전력 PHEMT제작 및 특성 연구)

  • Lee, Seong-Dae;Chae, Yeon-Sik;Yun, Gwan-Gi;Lee, Eung-Ho;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.383-389
    • /
    • 2001
  • We report on the design, fabrication, and characterization of 0.35${\mu}{\textrm}{m}$-gate AIGaAs/InGaAs PHEMTs for millimeter-wane applications. The epi-wafer structures were designed using ATLAS for optimum DC and AC characteristics, 0.351m-gate AIGaAs/rnGaAs PHEMTs having different gate widths and number of fingers were fabricated using electron beam lithography Dependence of RF characteristics of PHEMT on gate finger with and number of gate fingers have been investigated. PHEMT haying two 0.35$\times$60${\mu}{\textrm}{m}$$^2$ gate fingers showed the knee voltage, pinch-off voltage, drain saturation current density, and maximum transconductance of 1.2V, -1.5V, 275㎃/mm, and 260.17㎳/mm, respectively. The PHEMT showed fT(equation omitted)(current gain cut-off frequency) of 45㎓ and fmax(maximum oscillation frequency) of 100㎓. S$_{21}$ and MAG of the PHEMT were 3.6dB and 11.15dB, respectively, at 35㎓

  • PDF