• Title/Summary/Keyword: densification

Search Result 1,019, Processing Time 0.032 seconds

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

Time Evolution of Water Permeability Coefficient of Carbonated Concrete (탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석)

  • Yoon, In-Seok;Lee, Jeong-Yun;Cho, Byung-Young;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1053-1056
    • /
    • 2008
  • Permeability coefficient of concrete is a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Many researches to deal with the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficient of (non)carbonated concrete. When simulating micro-structural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient is calculated with the analytical formulation, followed by a microstructure-based model. Emphasis is on the micro-structural changes and its effective change of the permeability coefficient of carbonated concrete. The results of micro-structural water permeability coefficient model will be compared with results achieved from permeability experiments.

  • PDF

Sintering and Electrical Properties of Mn-doped ZnO-$TeO_2$ Ceramics

  • Hong, Youn-Woo;Baek, Seung-Kyoung;Hwang, Hyun-Suk;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.49-49
    • /
    • 2008
  • ZnO-based varistors have been widely used for voltage stabilization or transient surge suppression in electric power systems and electronic circuits. Recently, It has reported that the varistor behavior with nonlinear coefficient of 6~17 in Mn-doped ZnO. In this study we have chosen the composition of ZnO-$TeO_2-Mn_3O_4$ (ZTM) system to the purpose of whether varistor behavior appeared in doped ZnO by the solid state sintering or not. We investigated the sintering and electric properties of 0.5~3.0 at% Mn doped ZnO-1.0 at% $TeO_2$ system. Electrical properties, such as current-voltage (I-V), capacitance-voltage (C-V), and impedance spectroscopy were conducted. $TeO_2$ itself melts at $732^{\circ}C$ in air but forms the $ZnTeO_3$ phase with ZnO as increasing temperature and therefore retards the densification of ZnO to $1000^{\circ}C$. The average grain size of sintered samples was at about $3{\mu}m$ and decreased with increasing Mn contents. It was found that a good varistor characteristics were developed in ZTM system sintered at $1100^{\circ}C$ (nonlinear coefficient $\alpha$ ~ 60). The results of C-V characteristics such as barrier height ($\Theta$), donor density ($N_d$), depletion layer (W), and interface state density ($N_t$) in ZTM ceramics were $4\times10^{17}cm^{-3}$, 0.7 V, 40 nm, and $1.6\times10^{12}cm^{-2}$, respectively. It will be discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z(T)"-logf plots in ZTM system.

  • PDF

Big Data Meets Telcos: A Proactive Caching Perspective

  • Bastug, Ejder;Bennis, Mehdi;Zeydan, Engin;Kader, Manhal Abdel;Karatepe, Ilyas Alper;Er, Ahmet Salih;Debbah, Merouane
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.549-557
    • /
    • 2015
  • Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: Velocity, voracity, volume, and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul offloadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platformand the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4Gbyte of storage size (87%of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.

Low Firing Temperature Nano-glass for Multilayer Chip Inductors (칩인덕터용 저온소성 Nano-glass 연구)

  • An, Sung-Yong;Wi, Sung-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • [ $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ ] nano-glass has been prepared by sol-gel method. The mean particle size was 60.3 nm with narrow size distribution. The nano-galss has been used as a sintering aid for the densification of the NiZnCu ferrites. The ferrite was sintered with nano-glass sintering aids at $840{\sim}900^{\circ}C$, 2 h and the initial permeability, quality factor, density, and saturation magnetization were also measured. The initial permeability of 0.5 wt% nano-glass added toroidal sample for NiZnCu ferrites sintered at $900^{\circ}C$ was 193.3 at 1 MHz. The initial permeability and saturation magnetization were increased with increasing annealing temperature. As a result, $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ nano-glass systems were found to be useful as sintering aids for multilayer chip inductors.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Densification Behavior of W-20wt.% Cu Composite Materials Fabricated by Mechanical Alloying Method (기계적합금화법에 의해 제조된 W-20wt.%Cu복합재의 치밀화 거동)

  • Kim, Bo-Su;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.627-632
    • /
    • 1995
  • W-Cu composites utilize the high electrical conductivity of copper and arc erosion resistance of tungsten to provide properties better suited to electrical contact applications than either tungsten or copper alone. W-Cu composite materials were milled in an attritor with an impeller speed of 300rpm for various milling times. The milled powders were compacted at 300MPa into cylinders, 16m in diameter, and approximately 4m high. Sintering was performed in dry H$_2$at temperature ranging from 1200$^{\circ}C$ to 1400$^{\circ}C$. Samples were sectioned and were polished for scanning electron microscopy (SEM) of microstructures. Homogeneous W-Cu composites were formed after 10 hours mechanical alloying and could be attained 99% density at 1330$^{\circ}C$. As mechanical alloying time increased, Fe-concentration was increased linearly. Intermetallic compound formation interupted the growth of W particles Increased hardness.

  • PDF

The Effects of $SrTiO_3$ Addition on the Microstructure and Magnetic Properties of YIG (YIG ($Y_3$$Fe_5$O_{12}$)의 미세구조 및 자성 특성에 대한 $SrTiO_3$첨가 영향)

  • Jang, Hak-Jin;Yun, Seok-Young;Kim, Tae-Ok
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.203-206
    • /
    • 2001
  • The effects of SrTiO$_3$ addition and sintering temperature on the microstructure and magnetic properties of yttrium iron garnet (YIG) were investigated. The lattice Parameter increasing of sintered YlG with small amount of SrTiO$_3$ addition was supposed to be substituted $Y^{+3}$, Fe$^{+3}$ ions to Sr$^{+2}$,Ti$^{+4}$ ions which are relatively large in ionic ranius. A YIG specimen sintered at 142$0^{\circ}C$ with 0.2mol% SrTiO$_3$ showed above 98% densification of theoretical density. Saturation magnetization (M$_s$) at room temperature decreased a little bit with increasing SrTiO$_3$, addition but no great chance. In addition, the coercivity (H$_c$) was almost not changed by sintering temperature.

  • PDF

Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile (개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석)

  • Lee, Junho;Ji, Su-Bin;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2017
  • This study analyzes behavior of bearing capacity of open-ended pipe pile from laboratory experiment results. Unlike the conventional pipe piles, cone penetration is implemented into the inside of the pipe pile. During the cone penetration, cone driving energy helps densification of plugged soils and soils below the pile end. Sand pluviator was used to obtain homogeneous soil layers. Two kinds of piles with different pile outer surface roughness were prepared, and two different drop heights of pile driving were applied. Eight experimental cases varying pile outer surface roughness, pile driving energy for conventional and cone penetration implemented piles were conducted. From the experiments, ultimate load of the pile increased approximately by 70% for increased pile driving height, and it increased by 21% for rougher surface pile. When cone penetration is implemented, the ultimate load increased by 40% in average.