• 제목/요약/키워드: densification, and grain growth

검색결과 173건 처리시간 0.03초

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

첨가제와 소결분위기가 $SnO_2$ 요업체의 치밀화에 미치는 영향 (Effects of Sintering Atmosphere and Dopant Addition on the Densifcation of $SnO_2$ Ceramics)

  • 정재일;김봉철;장세홍;김정주
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1221-1226
    • /
    • 1997
  • The effects of sintering atmosphere and dopant addition on the behavior of densification and grain growth of SnO2 ceramics were investigated with consideration of defect chemistry. CoO and Nb2O5 were chosen as dopants, and oxygen and nitrogen were used for controlling of sintering atmospheres. With the decrease of oxygen partial pressure, densification was depressed due to evaporation of SnO2 ceramics. In the case of SnO2 sintering, the addition of CoO, which produced oxygen vacancy in SnO2 ceramics, led to acceleration of densification and grain growth. On the contrary, when Nb2O5 as a dopant producing Sn vacancy was added to SnO2 ceramics, densification and grain growth were simultaneously retarded. As results, it was conformed that diffusion of oxygen ions was rate determinant in densification and grain growth of SnO2 ceramics.

  • PDF

소결 분위기에 따른 이산화 우라늄의 치밀화 및 입자성장 (Effect of Sintering Atmosphere on the Densification and Grain Growth of Uranium Dioxide at the Final-Stage Sintering)

  • 이영우
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.214-221
    • /
    • 1997
  • The densification and grain growth mechanisms of $UO_{2+x}$ in $H_2$ and in $CO_2$ have been investigated. Uranium dioxide powder compacts were sintered at 1$700^{\circ}C$ in $H_2$ or at 110$0^{\circ}C$ in $CO_2$ for various times from 0.5 h to 16 h. The grain size and density of the specimens were measured. From the measured data, the mechanisms of the densification and grain growth were determined by use of available kinetic equations which express the relations between densification and grain growth. In both atmospheres, it has been found that the densification was controlled by the lattice diffusion and the grain growth by the surface diffusion of atoms around pores. It appears that the surface diffusivity as well as the lattice diffusivity increase considerably with the increase in O/U ratio in the specimen.

  • PDF

$BaTiO_3$ 요업체에서 입성장에 따른 치밀화 거동 (Densification Behavior of $BaTiO_3$ Ceramics with Grain Growth)

  • 이태헌;김정주;김남경;조상희
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.51-56
    • /
    • 1995
  • Variation of sintered density of BaTiO3 powder calcined at 120$0^{\circ}C$ and 135$0^{\circ}C$ was investigated with respect to the grain growth behavior. It was found that BaTiO3 powder, which was calcined at 120$0^{\circ}C$, showed abnormal grain growth behavior during sintering process. At initial stage of sintering process, the densification rate of specimen was accelerated with rapid grain growth caused by the abnormal grain growth. But with the increase of sintering time, abnormally grown grain met each other and the density of specimen decreased drastically due to coalescence of pores located in triple junction. On the contrary, BaTiO3 powder calcined at 135$0^{\circ}C$ showed normal grain growth behavior and gradually densified with the increase of sintering time.

  • PDF

MgO 및 TiO2가 첨가된 알루미나의 치밀화와 입성장 거동 (Densification and Grain Growth Behavior of MgO and TiO2-doped Alumina)

  • 이정아;김정주
    • 한국세라믹학회지
    • /
    • 제39권11호
    • /
    • pp.1083-1089
    • /
    • 2002
  • 알루미나 세라믹스에 MgO와 $TiO_2$를 각각 단독으로 첨가했을 때의 치밀화와 소결 거동을 수축률-소결 밀도 관계를 통해 비교 조사하였다. MgO가 첨가되었을 때는 소결 전과정을 통해 입성장은 억제되고 치밀화는 촉진되었으나, $TiO_2$가 첨가되었을 때는 입성장은 촉진된 반면 치밀화는 떨어졌다. 또한 입자 크기, 밀도, 수축률등을 통해 수축률-소결 밀도 관계를 구하여 최대 수축률을 나타내는 밀도값(Density of Maximum Shrinkage Rate:${\rho}$J.S.R)을 조사해 보았다. 이때 최대 수축률을 나타내는 밀도값보다 낮은 밀도를 보이는 영역에서는 치밀화가 입성장보다 우세하게 진행되었으며 최대 수축률을 나타내는 밀도값보다 높은 밀도의 영역에서는 입성장이 보다 우세하게 진행되는 것으로 추정하였다. 이때 최대 수축률을 나타내는 밀도값은 $TiO_2$가 첨가된 알루미나 < 순수 알루미나 < MgO가 첨가된 알루미나의 순서로 높은 값을 보였다.

Effect of Interface Structures on Densification and Grain Growth during Sintering

  • Hwang, Nong-Moon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.62-63
    • /
    • 2006
  • Both densification and grain growth are driven by the reduction of the interfacial area, kinetics of which depends strongly on the interface structure. Abnormal grain coarsening in the system of singular solid/liquid interface such as WC-Co alloys was explained by the growth mechanism of 2-dimensional nucleation. Based on this concept, the marked inhibition of coarsening of WC grains by VC addition can be approached by the increase in the step free energy, which increases the barrier of 2-dimensional nucleation. The activated sintering in tungsten powders can be approached by the interface structure change induced by the addition of a small amount of nickel.

  • PDF

세라믹 분말 성형체의 크리프 치밀화 및 결정립 성장의 해석 (Analysis for Creep Densification and Grain Growth of Ceramic Powder Compacts)

  • 권영삼;김기태
    • 한국세라믹학회지
    • /
    • 제30권4호
    • /
    • pp.251-258
    • /
    • 1993
  • A constitutive model is proposed to analyze creep densification and grain growth of ceramic powder compacts. The creep strain rates for powder compacts are obtained from constitutive equations proposed by Rahaman et al. and Helle et al. The grain-growth rate is obtained by assuming time, grain size, and strain rate as its internal state variables. the proposed constitutive model is compared with experimental data for alumina compacts obtained by Venkatachari and Raj for sinter forging and by Son et al. for hot pressing.

  • PDF

지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장 (Densification behavior and grain growth of zirconia powder compacts at high temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

TiO$_2$첨가에 따른 ITO 세라믹스의 소결 거동 (Sintering Behaviors of ITO Ceramics with Additions of TiO$_2$)

  • 정성경;김봉철;장세홍;김정주
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.347-354
    • /
    • 1998
  • Densification and grain growth behaviors of ITO ceramics were investigated as a function of TiO2 ad-ditions. TiO2 addition led to inhibition of the grain growth and promotion of the densification of ITO ceram-ics. From the microstructure observation it was found that the crack-like voids which were formed in pure ITO specimens decreased with increase of TiO2 additon. The grain growth exponent(n) was measur-ed to be 4 for pure ITO 3 for TiO2-doped ITO specimens respectively. It was supposed that the grain boun-dary migration of pure ITO ceramics was controlled by the pores which were moved by surface diffusion. On the contrary the grain boundary migration of TiO2-doped ITO specimens was depressed by solute drag effect. The activation energies for grain growth were measured to be 1013 kJ/mol for pure ITO ceramics and 460kJ/mol for TiO2-doped ITO specimens respectively.

  • PDF