• Title/Summary/Keyword: dense networks

Search Result 171, Processing Time 0.029 seconds

Buffer and Rate Control Based Congestion Avoidance in Wireless Sensor Networks

  • Alam, Muhammad Mahbub;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1291-1293
    • /
    • 2007
  • Due to dense deployment and innumerable amount of traffic flow in wireless sensor networks (WSNs), congestion becomes more common phenomenon from simple periodic traffic to unpredictable bursts of messages triggered by external events. Even for simple network topology and periodic traffic, congestion is a likely event due to dynamically time varying wireless channel condition and contention caused due to interference by concurrent transmissions. In this paper, we have proposed three mechanisms: upstream source count and buffer based rate control and snoop based MAC level ACK scheme to avoid congestion. The simulation results show that our proposed mechanism achieves around 80% delivery ratio even under bursty traffic condition

  • PDF

Differentiated RWA Algorithm Providing QoS Recovery in the Next Generation Backbone Network based on DWDM (DWDM 기반의 차세대 백본망에서 QoS Recovery를 제공하는 차등적인 RWA 알고리즘)

  • Bae, Jung-Hyun;Song, Hyun-Su;Lee, Hyun-Jin;Kim, Young-Boo;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.105-108
    • /
    • 2003
  • In the next generation backbone networks based on dense-wavelength division multiplexing (DWDM), the routing and wavelength assignment with quality-of-service (QoS) recovery is essentially needed to support a wide range of communication-intensive and real-time multimedia services. This paper proposes a new dpmic routing method called as MW-MIPR (MultiWavelength-Minimum Interference Path Routing), which chooses a route that does not interfere too much with many potential future connection requests. This paper also proposes a differentiated RWA mechanisms combined with MW-MIPR algorithm to provide QoS recovery for various multimedia applications in the next generation backbone networks based on DWDM.

  • PDF

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Key Challenges of Mobility Management and Handover Process In 5G HetNets

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.139-146
    • /
    • 2022
  • Wireless access technologies are emerging to enable high data rates for mobile users and novel applications that encompass both human and machine-type interactions. An essential approach to meet the rising demands on network capacity and offer high coverage for wireless users on upcoming fifth generation (5G) networks is heterogeneous networks (HetNets), which are generated by combining the installation of macro cells with a large number of densely distributed small cells Deployment in 5G architecture has several issues because to the rising complexity of network topology in 5G HetNets with many distinct base station types. Aside from the numerous benefits that dense small cell deployment delivers, it also introduces key mobility management issues such as frequent handover (HO), failures, delays and pingpong HO. This article investigates 5G HetNet mobility management in terms of radio resource control. This article also discusses the key challenges for 5G mobility management.

Accuracy Analysis and Comparison in Limited CNN using RGB-csb (RGB-csb를 활용한 제한된 CNN에서의 정확도 분석 및 비교)

  • Kong, Jun-Bea;Jang, Min-Seok;Nam, Kwang-Woo;Lee, Yon-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2020
  • This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3×3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.

QoS-based RWA Algorithm for providing QoS Services in the Next Generation Internet based on DWDM (DWDM 기반의 차세대 인터넷에서 QoS서비스 제공을 위한 QoS-based RWA 알고리즘)

  • 배정현;송현수;김성운;김영부;조기성;이현진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.27-37
    • /
    • 2003
  • In the next generation Internet(NGI) based on dense wavelength division multiplexing(DWDM) technology, QoS RWA considering various QoS parameters of DWDM networks is regard as one of the key issues in providing real-time multimedia services. However, finding a qualified path meeting multi-constraints is generally NP-complete problem. It is insufficient for QoS RWA researches in DWDM networks that must consider QoS parameter as well as wavelength-continuity constraint. This paper proposes qualified path routing (QPR) algorithm with minimum computation and implementation complexity based on flooding method to accomplish QoS routing and wavelength assignment (RWA). We also introduce a QoS-based RWA mechanism considering multi-constraint such as optical signal quality attributes, survivability and wavelength-continuity constraint combined with proposed routing algorithm. Simulation results show superior efficiency of the proposed algorithms in terms of blocking probability, routing overhead and survivability ratio.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Small-cell based Cooperative Multi-Point Communications to Increase Macro-cell User Performance in Ultra-Dense Heterogeneous Networks (고밀도 이기종 네트워크에서 매크로셀 사용자 성능 향샹을 위한 스몰셀 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2021
  • In ultra-dense heterogeneous networks, the amount of interference from small-cell base stations(SBS) to macro-cell user equipments (MUEs) increases significantly as the number of SBSs increases and it causes the MUEs to decrease the signal-to-interference and noise ratio(SINR) and system capacity. In this paper, we propose a small-cell based cooperative multi-point(CoMP) communication scheme that can guarantee the performance of MUEs even when the number of SBSs increases. In the proposed scheme, MUEs first find SBSs that give signal strength equal to or greater than a given SINR threshold and then they are served by different numbers of the selected SBSs using CoMP to improve the performance of MUEs. Simulation results show that the proposed small-cell based CoMP scheme outperforms other interference management or CoMP schemes in terms of the SINR and system capacity of MUEs.

Cross-layer Design of Private MAC with TH-BPPM and TH-BPAM in UWB Ad-hoc Networks

  • Parvez, A.Al;Khan, M.A.;Hoque, M.E.;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1189-1197
    • /
    • 2006
  • Ultra-wideband(UWB) is a killer technology for short-range wireless communications. In the past, most of the UWB research focused on physical layer but the unique characteristics of UWB make it different to design the upper layer protocols than conventional narrow band systems. Cross-layer protocols have received high attention for UWB networks. In this paper, we investigate the performance of two physical layer schemes: Time Hopping Binary Pulse Position Modulation(TH-BPPM) and Time Hopping Binary Pulse Amplitude Modulation (TH-BPAM) with proposed private MAC protocol for UWB ad-hoc networks. From pulse level to packet level simulation is done in network simulator ns-2 with realistic network environments for varying traffic load, mobility and network density. Our simulation result shows TH-BPAM outperforms TH-BPPM in high traffic load, mobility and dense network cases but in a low traffic load case identical performance is achieved.

Fast Recovery Routing Algorithm for Software Defined Network based Operationally Responsive Space Satellite Networks

  • Jiang, Lei;Feng, Jing;Shen, Ye;Xiong, Xinli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2936-2951
    • /
    • 2016
  • An emerging satellite technology, Operationally Responsive Space (ORS) is expected to provide a fast and flexible solution for emergency response, such as target tracking, dense earth observation, communicate relaying and so on. To realize large distance transmission, we propose the use of available relay satellites as relay nodes. Accordingly, we apply software defined network (SDN) technology to ORS networks. We additionally propose a satellite network architecture refered to as the SDN-based ORS-Satellite (Sat) networking scheme (SDOS). To overcome the issures of node failures and dynamic topology changes of satellite networks, we combine centralized and distributed routing mechanisms and propose a fast recovery routing algorithm (FRA) for SDOS. In this routing method, we use centralized routing as the base mode.The distributed opportunistic routing starts when node failures or congestion occur. The performance of the proposed routing method was validated through extensive computer simulations.The results demonstrate that the method is effective in terms of resoving low end-to-end delay, jitter and packet drops.