• Title/Summary/Keyword: denial-of-service (DoS) attack

Search Result 107, Processing Time 0.035 seconds

SYN Flood DoS Detection System Using Time Dependent Finite Automata

  • Noura AlDossary;Sarah AlQahtani;Reem Alzaher;Atta-ur-Rahman
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.147-154
    • /
    • 2023
  • Network intrusion refers to any unauthorized penetration or activity on a computer network. This upsets the confidentiality, integrity, and availability of the network system. One of the major threats to any system's availability is a Denial-of-Service (DoS) attack, which is intended to deny a legitimate user access to resources. Therefore, due to the complexity of DoS attacks, it is increasingly important to abstract and describe these attacks in a way that will be effectively detected. The automaton theory is used in this paper to implement a SYN Flood detection system based on Time-Dependent Finite Automata (TDFA).

Data Mining based Denial of Service Attack Detection Scheme (데이터 마이닝을 이용한 서비스 거부 공격 탐지 기법)

  • 박호상;조은경;강용혁;엄영익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.715-717
    • /
    • 2003
  • DoS (Denial of Service) 공격은 주로 victim 호스트에 대량의 패킷을 보내거나 비정상적인 패킷을 보냄으로써 정상 사용자가 서비스를 이음하지 못하도록 하는 공격을 의미한다. 이러한 DoS 공격을 탐지하기 위해 다양한 기법들이 개발되어 왔으나, 공격의 종류와 방법은 시간이 흐를수록 매우 다양해지고 있어 이를 탐지하는데 한계가 있다. 본 논문에서는 네트워크 패킷의 헤더정보를 감사 자료로 가지고 있는 NIDS (Network-based Intrusion Detection System)에 데이터 마이닝 기법을 적용기켜 이러한 DoS 공격을 탐지할 수 있는 기법을 제안한다. 이 기법을 이용하면 빠르고 자동화된 방법으로 DoS 공격을 탐지할 수 있다. 본 논문에서는 제안 기법을 이용하여 SYN Flooding 공격과 Teardown 공격에 대한 탐지가 가능함을 보인다.

  • PDF

Cloud Attack Detection with Intelligent Rules

  • Pradeepthi, K.V;Kannan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4204-4222
    • /
    • 2015
  • Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.

A Study on Security Requirement against Denial of Service Attack in Sensor Network (센서 네트워크에서의 서비스 거부(Denial of Service) 공격에 대한 보안요구사항 연구)

  • Lim, Hui-Bin;Park, Sang-Jin;Kim, Mi-Joo;Shin, Yong-Tae;Choe, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.631-632
    • /
    • 2009
  • 센서 네트워크에 대한 보안은 일반 네트워크와 동일하게 보안성, 무결성, 가용성 등이 요구된다. 그러나 일반적으로 센서 네트워크는 무선 통신을 하는 네트워크이고, 고정된 인프라가 없으며, 네트워크 토폴로지가 자주 변하는 특징으로 인해 보안문제는 어려운 것으로 인식되고 있다. 특히, 센서 노드의 에너지와 같은 자원 고갈을 유발하여 정상적인 동작을 못하게 하는 서비스 거부(Denial of Service, DoS)와 같은 공격에 취약하다. 본 논문에서는 센서 네트워크의 일반적인 구성을 통해 발생할 수 있는 DoS 공격의 유형을 분석하고, 보안요구사항을 제시하였다. 제시한 보안요구사항은 DoS 공격 뿐 아니라 센서 네트워크에서 발생할 수 있는 다양한 공격 유형에 대한 보안요구사항을 마련하는 데에 기초가 될 것으로 기대한다.

Denial of Service Attack Detection in Zigbee Home Network (Zigbee 홈 네트워크에서의 DoS를 이용한 인증정보위조공격 탐지)

  • Jeon Hyo-Jin;Kim Dong-Kyoo;Lim Jae-Sung;Jeon Sang-Kyoo;Yang Sung-Hyun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.419-422
    • /
    • 2006
  • Zigbee 홈 센서네트워크에서의 보안은 최근 떠오르는 중요한 문제 중 하나이다. 네트워크에 침입하거나 기능을 마비시키기 위해 여러 가지 공격방법들이 사용되고 있으며, 기 중 정상 노드로의 DoS(Denial of Service)공격은 네트워크에서 사용 중인 주파수를 알고 있다면 쉽게 수행될 수 있고 그 후 무력화된 노드의 인증정보를 이용해서 더 큰 문제를 발생시킬 수 있다. 본 논문에서는 zigbee 노드에 대한 DoS 공격과 인증정보위조 공격을 효율적으로 탐지해 낼 수 있는 방식을 제안한다.

  • PDF

Cryptanalysis of Remote User Authentication Scheme (원격 사용자 인증 구조의 암호학적 분석)

  • Choi, Jong-Seok;Shin, Seung-Soo;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • In 2004, Das et al. proposed a scheme for preserving a user anonymity. However, In 2005, Chien and Chen pointed out that Das et al. scheme fail to protect the user anonymity, and proposed a new scheme. And then in 2007, Hu et al. pointed out that Chien and Chen scheme also has some problems; it is Strong masquerading server/user attack, Restricted replay attack, Denial of service attack. it also slow wrong password detection, and proposed a new scheme. In 2008, Bindu et al. repeatedly pointed out on Chien and Chen scheme and proposed their scheme. However, we point out that all of their scheme also has some problems; it is not to protect the user anonymity and Denial of service attack. In addition, Bindu et al. is vulnerable to Strong masquerading server/user attack. Therefore, we demonstrate that their scheme also have some problems; it is the user anonymity and denial of service attack as above.

Marking Algorithm based Attack Origin Detection in IP Traceback (Marking Algorithm 기반 IP 역추적의 공격 진원지 발견 기법)

  • 김수덕;김기창;김범룡
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.814-816
    • /
    • 2002
  • 최근 급증하고 있는 인터넷 사용자들을 위한 인터 서비스 업체들의 증가와 더불어 악의적인 공격자의공격 또한 증가하고 있다. 이러한 공격으로 인한 인터넷 업체들에게 치명적일 수 있는 신용에 대한 불신임과 서비스의 불안정이라는 피해는 기업의 이미지를 실추시키는 등 막대한 영향을 끼칠 수도 있다. 이러한 악의적인 공격 형태 중 가장 최근 가장 빈번하게 그리고 큰 피해를 주는 공격형태가 DoS(Denial-of-Service)[1]공격이다. 그러나 DoS공격에 대한 적당한 대응방법이 아직까지 미비한 상태이고, 공격에 대응하여 방어한다고 해도 그 진원지를 찾아내지 못한다면 추후 동일한 공격자(attack)에 의해 재차 공격을 받을 가능성을 배제할 수 없는 실정이다. 이에 본 논문은 DoS공격에 대한 적당한 대응하는 하나의 방법으로 공격 경로(attack path)를 찾아내고 더 나아가 공격 진원지(attack origin)의 MAC address를 알아냄으로써 공격의 진원지를 찾아내는 방법을 제안한다.

  • PDF

DDoS Attack Path Retracing Using Router IP Address (라우터 IP주소를 이용한 DDoS 공격경로 역추적)

  • 원승영;구경옥;오창석
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.223-226
    • /
    • 2003
  • The best way in order to protect the system resource front Distributed Denial of Service(DDoS) attack is cut off the source of DDoS attack with path retracing the packet which transferred by attacker. Packet marking method can not use ICMP cause by using IP identifier field as marking field. And in case of increasing the number of router, retracing method using router ID has the size of marking field's increasing problem. In this paper, we propose that retracing method can be available the ICMP using marking field for option field in IP header and the size of making Held do not change even though the number of router is increased using the mark information which value obtained through XOR operation on IP address.

  • PDF

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Detecting Jamming Attacks in MANET (MANET에서의 전파방해 공격 탐지)

  • Shrestha, Rakesh;Lee, Sang-Duk;Choi, Dong-You;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.482-488
    • /
    • 2009
  • Mobile Ad-hoc Networks provide communication without a centralized infrastructure, which makes them suitable for communication in disaster areas or when quick deployment is needed. On the other hand, they are susceptible to malicious exploitation and have to face different challenges at different layers due to its open Ad-hoc network structure which lacks previous security measures. Denial of service (DoS) attack is one that interferes with the radio transmission channel causing a jamming attack. In this kind of attack, an attacker emits a signal that interrupts the energy of the packets causing many errors in the packet currently being transmitted. In harsh environments where there is constant traffic, a jamming attack causes serious problems; therefore measures to prevent these types of attacks are required. The objective of this paper is to carry out the simulation of the jamming attack on the nodes and determine the DoS attacks in OPNET so as to obtain better results. We have used effective anomaly detection system to detect the malicious behaviour of the jammer node and analyzed the results that deny channel access by jamming in the mobile Ad-hoc networks.