• 제목/요약/키워드: deletion analysis

검색결과 535건 처리시간 0.025초

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

일본어 회화문에 나타난 축약형의 음운론적 해석과 음향음성학적 분석 (Acoustical Analysis of Phonological Reduction in Conversational Japanese)

  • 최영숙
    • 음성과학
    • /
    • 제8권4호
    • /
    • pp.229-241
    • /
    • 2001
  • Using eighteen texts from various genera of present-day Japanese, I collected phonologically reduced forms frequently observed in conversational Japanese, and classified them in search of a unified. explanation of phonological phenomena. I found 7,516 cases of reduced forms which I divided into 43 categories according to the types of phonological changes they have undergone. The general tendencies are that deletion and fusion of a phoneme or an entire syllable takes place frequently, resulting in the decrease in the number of syllables. From a morphosyntactic point of view, phonological reduction often occurs at the NP and VP morpheme boundaries. The following findings are drawn from phonetical observations of reduction. (1) Vowels are more easily deleted than consonants. (2) Bilabials ([m], [b], and [w]) are the most likely candidates for deletion. (3) In a concatenation of vowels, closed vowels are absorbed into open vowels, or two adjacent vowels come to create another vowel, in which case reconstruction of the original sequence is not always predictable. (4) Alveolars are palatalized under the influence of front vowels. (5) Regressive assimilation takes place in a syllable starting with [r], changing the entire syllable into a phonological choked sound or a syllabic nasal, depending on the voicing of the following phoneme.

  • PDF

TRAF6 Distinctly Regulates Hematopoietic Stem and Progenitors at Different Periods of Development in Mice

  • Kim, Hyekang;Lee, Seungwon;Lee, Seung-Woo
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.753-761
    • /
    • 2018
  • Tumor necrosis factor receptor-associated factor 6 (TRAF6) is identified as a signaling adaptor protein that regulates bone metabolism, immunity, and the development of several tissues. Therefore, its functions are closely associated with multiple diseases. TRAF6 is also involved in the regulation of hematopoiesis under steady-state conditions, but the role of TRAF6 in modulating hematopoietic stem and progenitor cells (HSPCs) during the developmental stages remains unknown. Here, we report that the deletion of TRAF6 in hematopoietic lineage cells resulted in the upregulation of HSPCs in the fetal liver at the prenatal period. However, in the early postnatal period, deletion of TRAF6 drastically diminished HSPCs in the bone marrow (BM), with severe defects in BM development and extramedullary hematopoiesis in the spleen being identified. In the analysis of adult HSPCs in a BM reconstitution setting, TRAF6 played no significant role in HSPC homeostasis, albeit it affected the development of T cells. Taken together, our results suggest that the role of TRAF6 in regulating HSPCs is altered in a spatial and temporal manner during the developmental course of mice.

Prevalence of Y chromosome microdeletions among infertile Mongolian men

  • Damdinsuren, Erdenesuvd;Naidansuren, Purevjargal;Gochoo, Mendsaikhan;Choi, Bum-Chae;Choi, Min-Youp;Baldandorj, Bolorchimeg
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권2호
    • /
    • pp.101-109
    • /
    • 2022
  • Objective: Y chromosome microdeletions are the second most common genetic cause of male infertility after Klinefelter syndrome. The aim of this study was to determine the patterns of Y chromosome microdeletions among infertile Mongolian men. Methods: A descriptive study was performed on 75 infertile men from February 2017 to December 2018. Y chromosome microdeletions were identified by polymerase chain reaction. Semen parameters, hormonal levels, and testis biopsy samples were examined. Results: Among 75 infertile men, two cases of Y chromosome microdeletions were identified. The first case had an AZFa complete deletion and the other had an AZFc partial deletion. This study found that the proportion of Y chromosome microdeletions among infertile Mongolian men was 2.66%. Conclusion: The findings can be applied to in vitro fertilization and assisted reproductive technology, and our results will help clinicians improve treatment management for infertile Mongolian couples.

Aspergillus nidulans 무성분화 촉진 조건의 단백체 및 해당 유전자 기능분석 (Functional Analysis of Aspergillus nidulans Genes Selected by Proteomic Analysis under Conditions Inducing Asexual Development)

  • 임주연;강은혜;정보리;박희문
    • 한국균학회지
    • /
    • 제45권3호
    • /
    • pp.196-211
    • /
    • 2017
  • Aspergillus nidulans의 포자형성 및 무성분화에 관여하는 새로운 인자를 찾고자, 포자형성 촉진 조건인 0.6 M KCl이 첨가된 배지와 첨가되지 않은 배지에서 자란 균사체의 단백질체 분석을 시도하였다. 2DE 분석을 통해 2,400여개의 spot을 확인하였고, 무성분화 유도 9시간 및18시간 별로 생성양의 변화양상을 기준으로 총 5개의 그룹으로 나눌 수 있었다. 기능 분석이 아직까지 이루어지지 않은 단백질을 암호화하고 있는 유전자들 가운데 DU 그룹에 속하는 AN1342와 DD 그룹에 속하는 AN9419 두 개의 유전자의 기능을 알아보고자 유전자결손 돌연변이주를 제작하고 표현형을 관찰하였다. Alanine-glyoxylate aminotransferase의 기능을 할 것으로 예측되는 AN1342을 결손 시키면 무성분화 기관인 stalk의 길이가 짧아졌고, 액체 배양 시 야생형과 달리 배지로 분홍색 색소가 분비되어 sspA라 명명하였다. AN9419 결손균주는 균사생장이 심각하게 저해되고 알라닌이 첨가되어야 균사생장이 가능하였으나 무성포자 형성은 거의 이루어지지 않았으며 GO분석을 통하여 alanyl-tRNA synthetase의 기능을 할 것으로 유추된 점에 근거하여 alaA라 명명하였다.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae

  • Huh, Aram;Dubey, Akanksha;Kim, Seongbeom;Jeon, Junhyun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제33권2호
    • /
    • pp.193-205
    • /
    • 2017
  • Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ${\Delta}Mojmj1$ restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.

Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis aries) using mitochondrial DNA

  • Kim, Yi Seul;Tseveen, Khaliunaa;Batsukh, Badamsuren;Seong, Jiyeon;Kong, Hong Sik
    • 한국동물생명공학회지
    • /
    • 제35권2호
    • /
    • pp.198-206
    • /
    • 2020
  • Food and agricultural production sector, especially livestock production is vital for Mongolia's economic and social development. Domestic sheep play key roles for Mongolians, providing food (meat, milk) and raw materials (wool, sheepskin), but genetic diversity, origin of sheep populations in Mongolia have not been well studied. Studies of population genetic diversity is important research field in conservation and restoration of animal breeds and genetic resources. Therefore, this study aimed to investigate genetic characteristics and estimate origin through the analysis of mitochondrial DNA control region D-loop and Cytochrome b of Mongolian indigenous sheep (Mongolian native, Orkhon and Altanbulag) and one Europe sheep (Suffolk). As a result of there were found, 220 SNPs (Single nucleotide polymorphism) in the D-loop region, 28 SNPs in the Cytochrome B region, furthermore, 77 Haplotypes. The nucleotide diversity was only found in D-loop region (n = 0.0184). Phylogenetic analysis showed that 3 (A, B, and C) of 5 haplogroups of sheep have been identified in our research. Haplogroup C was only found in Mongolian indigenous sheep. Haplogroup D and E were not observed. As a result of haplogroups, haplogroup A was dominant (n = 46 of 94 sheeps), followed by haplogroup B (n = 36) and haplogroup C (n = 12). Sequence analysis showed that T deletion, insertion and heteroplasmy in D-loop region occurred at a high rate in Mongolian indigenous sheep population (T insertion = 47, T deletion = 83). The heteroplasmy, which has never been found in Mongolian sheep, has been newly discovered in this study. As a result, the Mongolian sheep varieties, which mainly derived from Asia, were in hybridization with European sheep varieties.

Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans

  • Wang, Jinhui;Tian, Ye;Zhou, Zhengfu;Zhang, Liwen;Zhang, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2106-2115
    • /
    • 2016
  • To identify the global effects of (p)ppGpp in the gram-positive bacterium Deinococcus radiodurans, which exhibits remarkable resistance to radiation and other stresses, RelA/SpoT homolog (RSHs) mutants were constructed by direct deletion mutagenesis. The results showed that RelA has both synthesis and hydrolysis domains of (p)ppGpp, whereas RelQ only synthesizes (p)ppGpp in D. radiodurans. The growth assay for mutants and complementation analysis revealed that deletion of relA and relQ sensitized the cells to $H_2O_2$, heat shock, and amino acid limitation. Comparative proteomic analysis revealed that the bifunctional RelA is involved in DNA repair, molecular chaperone functions, transcription, the tricarboxylic acid cycle, and metabolism, suggesting that relA maintains the cellular (p)ppGpp levels and plays a crucial role in oxidative resistance in D. radiodurans. The D. radiodurans relA and relQ genes are responsible for (p)ppGpp synthesis/hydrolysis and (p)ppGpp hydrolysis, respectively. (p)ppGpp integrates a general stress response with a targeted re-programming of gene regulation to allow bacteria to respond appropriately towards heat shock, oxidative stress, and starvation. This is the first identification of RelA and RelQ involvement in response to oxidative, heat shock, and starvation stresses in D. radiodurans, which further elucidates the remarkable resistance of this bacterium to stresses.

Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Hwang, Seok Hyun;Lee, Doh Won;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제60권3호
    • /
    • pp.249-256
    • /
    • 2017
  • The Monascus azaphilone (MAz) pigment is a well-known food colorant that has yellow, orange and red components. The structures of the yellow and orange MAz differ by two hydride reductions, with yellow MAz being the reduced form. Orange MAz can be non-enzymatically converted to red MAz in the presence of amine derivatives. It was previously demonstrated that mppE and mppG are involved in the biosynthesis of yellow and orange MAz, respectively. However, ${\Delta}mppE$ and ${\Delta}mppG$ knockout mutants maintained residual production of yellow and orange MAz, respectively. In this study, we deleted the region encompassing mppD, mppE and mppG in M. purpureus and compared the phenotype of the resulting mutant (${\Delta}mppDEG$) with that of an mppD knockout mutant (${\Delta}mppD$). It was previously reported that the ${\Delta}mppD$ strain retained the ability to produce MAz but at approximately 10% of the level observed in the wildtype strain. A chemical analysis demonstrated that the ${\Delta}mppDEG$ strain was still capable of producing both yellow and orange MAz, suggesting the presence of minor MAz route(s) not involving mppE or mppG. Unexpectedly, the ${\Delta}mppDEG$ strain was observed to accumulate fast-eluting pigments in a reverse phase high-performance liquid chromatography analysis. A LC-MS analysis identified these pigments as ethanolamine derivatives of red MAz, which had been previously identified in an mppE knockout mutant that produces high amounts of orange MAz. Although the underlying mechanism is largely unknown, this study has yielded an M. purpureus strain that selectively accumulates red MAz.